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Abstract—Hardware and software engineers are instrumental
in developing energy efficient mobile systems. Unfortunately
the last mile of energy efficiency comes from the choices and
requirements of end-users. Imagine an end-user who has no
power outlet access and must remain productive on the laptop’s
battery life. How does this user maximize their laptop’s battery
life, yet remain productive? What does the user have to give
up to keep on working? We highlight the perils that users face
and the ultimate responsibility users have for the battery life
and energy consumption of their mobile devices; using multiple
scenarios we show that executing a task can consume more or
less energy depending on the requirements and software choices
of users. We investigate multiple scenarios demonstrating that
applications can consume energy differently for the same task
thus illustrating the tradeoffs that end-users can make for the
sake of energy consumption.

Index Terms—energy consumption; energy efficiency; user
choice

I. INTRODUCTION

Classically the energy consumption and battery life of
mobile devices has relied on the computer, electrical and
software engineers who built and configured the system. In
the realm of software, energy efficiency has been primarily
the concern of operating systems (OS). There is little research
in the area of energy efficient end-user applications, and it
has primarily focused on recommendations on how to increase
energy efficiency.

From the perspective of energy efficiency, software can be
seen as a service. Therefore, we define energy efficiency of a
software application as the amount of energy required per “unit
of service” it provides. In general, the purpose of measuring
the energy efficiency of a device or service is to use it as a
comparison: if we can normalize two devices to provide the
same amount of service (say, two refrigerators of the same
size, or two laptops with comparable displays playing the same
movie), their energy efficiency ratings can be used to identify
the more energy efficient device or service.

Within the software realm, a “unit of service” is a malleable
unit that must be defined from the point of view of the user.
This can be: typing an average page, listening to 1 hr of music,
checking and downloading email every 5 minutes, etc. A unit
of service can be seen as a metric of quality-of-service, and
in many cases, it does not make any difference if it can be
executed any faster: the user will be satisfied as long as she
can run the services she wants with the desired quality of

service. For example, when listening to audio it does not make
sense to play it faster; similarly, the user might not want to
be interrupted more frequently than every five minutes by new
email, and therefore, there is no need to check for it any faster.

The user might have different applications to satisfy her
needs. In general, users will be confronted with many ap-
plications to choose from. For example, there are a very
large number of text editors, music players, and email clients
available. The decision on which to use lies on more subjective
requirements such as usability, features, cost, etc.

One requirement that is rarely considered by users is energy
efficiency. Given two software applications that can provide
the same service, at the expected quality, is one more energy
efficient than the other? This is particularly important if the
goal is to maximize battery life. For example, assume you are
on a transoceanic flight without power outlet access, and you
want to play music in your laptop as you type a letter. You
can choose between multiple applications to do it. How much
does the choice of application impact the battery life? How
much battery life would you lose if you decide to play the
most efficient one versus not playing any music at all?

In this paper we demonstrate that users, by selecting the
application to perform a task, play an important role in the
energy consumption and battery life of their mobile devices
(and by extension in the energy requirements of society).

The contributions of this paper are: we define the concept
of energy efficiency of software applications; we propose and
perform some user-oriented energy efficiency benchmarks.
We show that applications running within the same domain
can have wildly different power use profiles. Finally, we
demonstrate that users can have a positive impact in reducing
the energy consumption of the devices they use by choosing
the energy efficient applications.

II. PREVIOUS WORK

Energy consumption induced by software and peripherals
is of great industrial interest to GreenIT and other compa-
nies [1]–[7]. Mobile manufacturers such as Apple, Microsoft
and Intel [2], [3], [5], [6] have dedicated many resources in
terms of developer education and tools.

Modeling is an important part of energy consumption since
power regression tests are so difficult to make. Gurumurthi
et al. [8] utilized simulation in their approach to model and
estimate the power use of running systems. Within the mobile



space, Dong et al. [1] created an Android power monitor to
show which running software is responsible for power use.
Pathak et al. [9] tested applications like Angry Birds, with
and without advertisements, and found that advertisements
in free Android apps often led to more energy consumption.
Many of these models are not relevant to user-oriented energy
consumption due to heavy reliance on non-idle behaviour.

In terms of user-centric evaluation, Amsel et al. [10] have
tested benchmarks on web browsers such as Chromium and
Firefox to determine which one was more power efficient.
This was an example of one benchmark, while we take
a much broader and task oriented approach in this paper.
Procaccianti et al. [11] profiled the energy consumption of
different applications on a desktop computer to show the
energy consumption impact of software. However, we sort
applications into different categories and contrast the impact
of user choice on energy consumption.

III. ENERGY EFFICIENCY OF SOFTWARE

To this day, power benchmarking has been primarily con-
cerned with the energy consumption of different components
or the entire system. Nonetheless, the energy consumption of
a computer also depends on the applications that it runs at that
moment.

Johann et al. [12] have studied the energy efficiency of
software by measuring energy consumption of sorting pro-
grams. We argue that energy efficiency benchmarks should
be based on real applications and be user-centric. The user
expects to complete certain amount of work within a given
time; hence she determines the tasks that the software is
expected to accomplish. In some cases, the software, such
as an email client, is expected to run continuously. For
others, the user chooses when the software runs and stops. To
properly benchmark the energy consumption of an application
is necessary to determine the typical amount of work expected
from the application. This is highly dependent on the domain
of the application. In some cases this unit of work might be
measured by work completed per unit of time (throughput–
such as running an email client continuously), in others, simply
in terms of units of work completed (such as compressing a
file). Any of the benchmarked applications should be capable
of completing this amount of work. We call this the expected
quality-of-service. We will refer to the energy required to com-
plete the expected quality of service as the energy efficiency
of an application (and measure it in watts per unit-of-work).
The energy efficiency of an application will be the difference
between what energy a computer will consume while running
an application to complete that unit of work compared to not
running the application (all other things equal).

Any computer consumes energy whether it is idle or not.
In the same manner, running applications use energy whether
they are being used or not. Benchmarks should also be created
to measure the energy consumption of idle applications. We
will name this the ghost energy consumption of an application.
As its appliance’s counterpart, the ghost energy consumption

TABLE I
APPLICATIONS TESTED

Test Application Version

Text Editing gedit 3.4.1
LibreOffice Writer 3.5.7.2
Google Docs December 2012

Email Receiving Mozilla Thunderbird 16.0.2
Gmail on Mozilla Firefox December 2012 on 16.0.2

Music Playing mpg123 1.12.1
Banshee 2.4.1
Rhythmbox 2.96

is particularly worrisome because it might be more expensive
than stopping and restarting the application.

IV. METHODOLOGY

In this section we present the methodology for measuring
and comparing the energy consumption among applications
with equivalent functionality for completing the same task.
The general process is derived from our previous work on
Green Mining [13] and is as follows:

1) Choose a software product.
2) Decide on the level of instrumentation.
3) Develop a scenario and simulate users to apply each

application.
4) Build up the testbed to measure the energy consumption.
5) Run the tests and analyze results.

A. Choosing Software Products

In this study, we chose to develop tests for text edit-
ing applications, email clients and music players. The word
processing applications include the text editor gedit on
GNOME desktop, the word processor LibreOffice Writer (we
will simply refer to it as LibreOffice from now on) and Google
Docs. In terms of the email clients, Mozilla Thunderbird and
Gmail were chosen. When testing Google Docs and Gmail, we
used Mozilla Firefox as the web browser. Three music players
were tested and they are mpg123, Banshee and Rhythmbox.
The tested versions of these applications are shown in Table
I.

B. Deciding on the Level of Instrumentation

The device we used to measure the energy consumption
of the testing machine is the AC power monitor Watts Up?
Pro [13]. This meter monitors real-time electricity usage with
an accuracy of ±3% and collect a variety of data, including
power use in watts, and transmit this result over a USB-serial
connection.

C. Developing Use-Case Test Cases

In this paper, we sought to imitate real world users using
these applications and developed three scenarios to test the
energy consumption for each application in each scenario.



1) Idling Consumption: To properly measure the energy
consumption of the application on the machine where the tests
were run, we had to measure its idling energy consumption,
i.e. the energy it consumes when no application is explicitly
run. We left the Ubuntu Unity desktop running idle for a
period of 5 minutes and in the meanwhile measured its energy
consumption.

2) Editing Text: For text editing applications, the testing
scenario is to emulate a user creating a new document,
followed by typing text into it and finally saving it. We built
a X11::GUITest UI driver to emulate the mouse actions and
typing actions that we pre-recorded based on the first author
typing in preamble in the GNU GPL (560 words) in 6 minutes.

More specifically, for gedit and LibreOffice, the proce-
dure is 1) start the application, which opens a new document;
2) type the GNU GPL Preamble; 3) save the file; and, 4) close
the application. For Google Docs, 1) start Firefox; 2) go to the
Google Docs web page; 3) start a new document, 4) type the
document; 5) save it; and 6) close Firefox.

3) Receiving Email: Our scenario to test email clients
was meant to simulate a user idly receiving emails using
either Thunderbird or Gmail in the foreground without user
interaction. In order to implement this, a separate test computer
sent plain text emails, 1 per minute, to a single Gmail account.
Each email client was instructed to monitor the receiving email
account.

To test Thunderbird, 1) we started Thunderbird; 2) and
monitored Thunderbird for 10 minutes watching the 10 emails
appear; and 3) we closed Thunderbird.

To test Gmail, 1) Firefox was started with the Gmail cookie
already set; 2) the client would be instructed to type in the
Gmail URL to go to the Gmail web page; 3) monitor Firefox
and Gmail for 10 minutes as it received the 10 emails; and 4)
close Firefox.

4) Playing Music: Our third scenario was to listen to music.
For this we needed to test music players playing a three-minute
long song.

The mpg123 player was tested within a GNOME Terminal
since it is a command-line based player. It was started with the
song as a command-line parameter and would play the song
when it started; it terminated once the song finished playing.

Banshee and Rhythmbox have GUIs, making their testing
more complicated and requiring a GUI driver. They also
maintain a database of the music of the users. For this reason,
before we tested each application, we added the test song
to their databases (it was the only song in them). Both
Banshee and Rhythmbox were started by clicking on their
respective icons on the Ubuntu 12.04’s Unity panel. Once each
application was opened we clicked the play icon which played
the song, as it was the only song in the library. Once the song
was finished playing, our GUI driver clicked the close icon
and shutdown the music player.

5) Idling Applications: In order to understand the differ-
ence between ghost energy consumption of the idle applica-
tions and compare them to the energy consumption of the
testing scenarios above, we tested the energy consumption of

all the applications without handling any workload but staying
in the background. To be specific, we started each of the text
editing, email and music applications (except for mpg123
because it is command line based and it is not intended to
run idle), and immediately iconized them, without doing any
work (except for the email clients, who continued to check for
new email, but did not receive any).

D. Configuring the Testbed

We implemented our tests on a laptop, Lenovo ThinkPad
X31, running 32-bit Ubuntu 12.04. To minimize the measure-
ment noise during the tests, we removed its battery and turned
off any services and automatic updates performed by the OS.
We also disabled the screen saver and left the screen on at
maximum brightness during the tests. Our initial setup had to
balance the independence of the measurements versus the real-
world relevance to the end-user. Headphones were plugged-in
for the music tests.

We plugged the X31 into a Watts Up? Pro power meter
and recorded its reading in the associated scenarios of each
application by our application GreenLogger [13]. The Watts
Up? Pro lets us measure the total system power utilization,
without relying on a battery or recharging a battery between
tests.

E. Running the Tests and Analyzing Results

We rebooted the testbed between different application tests.
The first test after reboot was discarded in order to ensure
uniformity of having a hot disk-cache in each subsequent test.
We ran each test 40 times, ensuring that even in the presence
of skew, we could statistically evaluate difference between the
distributions of different applications using t-test. For each test,
we calculated the mean consumption (in watts) during the test.

V. RESULTS

In this section, we present the results and investigate the
energy consumption of all the tested applications. Note that
according to the t-test that all the comparisons in this section
are statistically (p < 10−10) significant even after correction
for multiple hypotheses.

A. Idling on the Testbed and Applications

These tests could help us benchmark the testbed’s idling
energy consumption and applications’ ghost energy consump-
tion. The idling on the computer used 19.5 watts on average
and we set it to be the system baseline, which is zero in
Figure 1 (the distributions of each test are statistically different
from any other, except for the idle and busy measurement of
Gmail, which is a statistical tie). As shown in our results, the
ghost energy consumption (while idle) of text editing applica-
tions, gedit, LibreOffice and Google Docs are 0.3, 0.5 and
1.1 watts correspondingly. The ghost energy consumption of
music playing applications, Banshee and Rhythmbox are 0.9
and 1.0 watts.

The ghost energy consumption of most of the tested appli-
cations shows that it would cost a significant amount of power
to just run the applications in the background doing nothing.
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Fig. 1. Distributions of the mean watts consumed per test: idling on testbed, text editing, email receiving, and music playing tests. 40 tests total each.

B. Editing Text

In this part, we discuss the energy consumption of three
applications, gedit, LibreOffice and Google Docs executing
our text processing scenario.
gedit has limited functionality compared to LibreOffice

and Google Docs which both focus more on word processing
than text editing. Thus few layout features and formatting at-
tributes are included in gedit. Since gedit is a lightweight
text editor, it is unsurprising that gedit has the lowest energy
consumption of the three. As shown in Figure 1, the average
consumption of gedit is about 2.0 watts higher than the
baseline.

LibreOffice provides more features than gedit. It includes
some layout features and formatting attributes like centering
and making bold titles. LibreOffice also has automatic spell
check that can automatically highlight and correct misspelled
words based on a dictionary. LibreOffice had 0.5 watts higher
energy consumption than gedit did, as shown in Figure 1.

Google Docs is similar to LibreOffice in terms of its
typesetting and layout features. Google Docs includes spell
checking too. Unlike gedit and LibreOffice, Google Docs
automatically synchronizes and saves text that is typed. This
auto-saving feature causes Google Docs to synchronize with
Google’s servers frequently. Thus, as we can observe from
Figure 1, the average consumption of Google Docs is 6.3, 4.3
and 3.8 watts higher than that of the system baseline, gedit,
and LibreOffice respectively.

C. Receiving Email

As shown in Figure 1, the energy consumption of Thunder-
bird and Gmail are relatively similar: 0.4 and 0.6 watts above
the baseline on average respectively.

Using different protocols to retrieve emails, Thunderbird
and Gmail didn’t behave the same in terms of energy con-
sumption. Gmail had 0.2 watts higher energy usage than that
of Thunderbird on average.

D. Playing Music

mpg123 is a command-line music player, whereas Banshee
and Rhythmbox both have GUIs. We used the default settings

such as volume and EQ in these three application when playing
the song. As shown in Figure 1, on average, mpg123 has
the lowest energy consumption, 0.2 watts above the baseline,
compared to Banshee, 1.7 watts and Rhythmbox, 1.5 watts
higher than the baseline.

For these tests, it is clear that GUIs and the music library
management features affect the energy consumption.

The non-GUI music player is approximately five to six times
more energy efficient than the ones with a GUI. It is also
remarkable that ghost energy consumption of the GUI players
is 0.9 and 1.0 watts.

Although the changes in power among applications are
small, the impact of the applications on the battery-time could
be dramatic. For example, using gedit would extend the
battery-time by 20% compared with Google Docs if one used
the testbed’s 71 watt-hours battery.

VI. DISCUSSION

A. Causes of Energy Consumption

In the tests we conducted, the main causes of energy
consumption we observed from our results were:

• Synchronization with the cloud: Google Docs suffered
greatly from constantly synchronizing the document in
the cloud.

• Web-based applications are less efficient than their stand-
alone counterparts likely due to network and browser
overhead.

• Heavy startup: Banshee and Rhythmbox perform many
tasks before they are ready to perform the tasks required.

• Continuous events are expensive: Spellcheckers hurt both
Google Docs and LibreOffice as they increased the num-
ber of events per keystroke.

• UI updates are expensive: UI interfaces that are continu-
ously updated consume a significant amount of energy.

B. Functionality Versus Consumption

If maximizing battery life is a major concern for users, they
would choose their application based on its energy consump-
tion. With the knowledge of different energy consumption



behaviours among applications in the same category, users are
likely to get the application with the least energy consumption
which also provides the expected quality of service. For
example, start by typing the document in gedit, then spell-
checking it in LibreOffice and finally uploading it to Google
Docs (one could take advantage of the features of these
products without incurring much of overhead of running them
a long time).

It is not surprising that more functionality often leads
towards an increase in energy consumption. Due to their
simplicity, both gedit and mpg123 are expected to perform
better than their counterparts. In the future, applications might
document the impact in energy consumption for each of their
features, and include different options for different levels of
energy consumption similar to the way OSes do it; e.g., a menu
option for low power or normal energy consumption where
some less important features—such as GUI animations—are
disabled. Users who want to optimize energy consumption
will be capable of making informed decisions in terms of
what to run and when. Similarly, the interface is probably
less important for the users than the ability to listen to music.

As shown in the previous section, many applications running
in the background continue to consume energy. The ghost
energy consumption of Banshee and Rhythmbox is even higher
than playing music with mpg123. So application developers
should consider reducing the number of events that occur dur-
ing idle time, since for certain applications idle-time dominates
(such as our email tests). Publicizing results of the bench-
marking ghost energy consumption would pressure developers
to focus on the energy efficiency of their idle applications.
We expect that, as hardware and operating systems become
more efficient, the focus will now turn towards the energy
consumption of applications. Developers could use existing
power estimating tools like PowerTOP [5] to start.

C. Software Application Energy Consumption Ratings

In general, users are unlikely to have the equipment, the
expertise or the time to measure the energy consumption of
applications. We propose the creation of Software Application
Energy Consumption Ratings (SAECR). A SAECR has three
main goals: 1) to define a framework and a methodology for
consistent measuring of consumption of applications; 2) to
create guidelines for the creations of benchmarks that represent
typical user needs; and 3) to simplify the reporting of results
in a manner that is easy-to-understand by typical users.

We believe that a SAECR can start with two bench-
marks. The first, measuring the ghost energy consumption
of applications. The second, relevant to applications that are
expected to continuously perform the same task without user
interaction (such as playing a movie, playing sound, a desktop
widget, etc). In both cases the benchmark is straightforward
(run the application and measure its consumption). These
tests will allow users to compare the energy efficiency of
similar applications. As mentioned before, this comparison
will pressure developers to improve the energy efficiency of
applications they develop and will allow users to determine

what applications they should use (or stop using) when they
are concerned with energy consumption (e.g. running on
battery power). For SAECR to be effective, policies could be
proposed to ensure SAECR compliance or competitiveness.

VII. CONCLUSION

Users have a choice of what application to use to complete
a task. In this paper we have proposed a user-centric method
to measure the energy consumption of applications based upon
the scenarios that correspond to tasks that users are expected
to complete. We demonstrate its effectiveness by defining
three such scenarios, and an implementation of benchmarks
to measure the consumption during each of them.

The results indicated that different applications can have
dramatically different energy consumptions when performing
the same task (e.g. a command line music player uses more
than six times less energy than a GUI one). We also found
that web-based applications tend to consume more energy
than non-web based, and that idle applications can incur a
significant amount of ghost energy consumption.

Unfortunately it is not trivial for users to know which ap-
plications are more energy efficient. We expect future work to
be directed towards the creation of benchmarks and reporting
mechanisms (similar to Energy Star 1) that inform developers
and users of the energy efficiency of their applications. This
will likely generate pressure on the developers to improve the
energy efficiency of the applications they develop.

Users, by making a conscious decision to use applications
that are optimized towards energy consumption, can improve
the battery life of their mobile devices, and perhaps more
importantly, contribute towards helping the environment.
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