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Towards artificial intelligence-based learning health system for
population-level mortality prediction using electrocardiograms
Weijie Sun1,6, Sunil Vasu Kalmady1,2,3,6, Nariman Sepehrvand2,4, Amir Salimi 1, Yousef Nademi1, Kevin Bainey2,4,
Justin A. Ezekowitz 2,4, Russell Greiner1,3, Abram Hindle1, Finlay A. McAlister2,4, Roopinder K. Sandhu2,5 and Padma Kaul2,4✉

The feasibility and value of linking electrocardiogram (ECG) data to longitudinal population-level administrative health data to
facilitate the development of a learning healthcare system has not been fully explored. We developed ECG-based machine learning
models to predict risk of mortality among patients presenting to an emergency department or hospital for any reason. Using the
12-lead ECG traces and measurements from 1,605,268 ECGs from 748,773 healthcare episodes of 244,077 patients (2007–2020) in
Alberta, Canada, we developed and validated ResNet-based Deep Learning (DL) and gradient boosting-based XGBoost (XGB)
models to predict 30-day, 1-year, and 5-year mortality. The models for 30-day, 1-year, and 5-year mortality were trained on 146,173,
141,072, and 111,020 patients and evaluated on 97,144, 89,379, and 55,650 patients, respectively. In the evaluation cohort, 7.6%,
17.3%, and 32.9% patients died by 30-days, 1-year, and 5-years, respectively. ResNet models based on ECG traces alone had good-
to-excellent performance with area under receiver operating characteristic curve (AUROC) of 0.843 (95% CI: 0.838–0.848), 0.812
(0.808–0.816), and 0.798 (0.792–0.803) for 30-day, 1-year and 5-year prediction, respectively; and were superior to XGB models
based on ECG measurements with AUROC of 0.782 (0.776–0.789), 0.784 (0.780–0.788), and 0.746 (0.740–0.751). This study
demonstrates the validity of ECG-based DL mortality prediction models at the population-level that can be leveraged for
prognostication at point of care.
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INTRODUCTION
Developing a learning health system, one that follows a cycle of
routinely collecting and analysing health data to generate new
knowledge that can be applied to inform health decisions or
system improvements, is a major priority for Canada and other
countries1. Canada’s publicly-funded, universal health care system
has allowed for the deterministic linkage of health care data from
different healthcare settings (hospitals, emergency departments,
outpatient clinics, and physician offices) to insurance and vital
statistics registries to identify predictors of mortality and develop
risk stratification algorithms2–4. These models have been
enhanced by the availability of pharmaceutical claims and
laboratory data at the population-level in some provinces5–8.
The electrocardiogram (ECG) is a readily available, low-cost

diagnostic tool performed on a majority of patients during an
acute care visit and contains important information about the
structure and electrical activity of the heart9. In recent years,
exponential advances in computational resources and machine
learning technologies, coupled with digitized ECG datasets have
opened up opportunities for ECG-based diagnostic and prognostic
predictions10–12. However, the feasibility and value of linking ECG
data to longitudinal population-level administrative health data to
assist clinicians at point of care decision-making with the goal of
completing the cycle of quality and facilitating a learning
healthcare system has not been previously explored1,13.
This motivated us to use a large population-level cohort of

patients with universal health insurance presenting to emergency
departments or hospitals to develop ECG-based machine learning
models to predict both short-term (30-day) and longer-term

mortality (1- and 5-year). We explored the added utility of
incorporating laboratory (lab) values available at the time of the
ECG to the models’ prediction performance, and examined the
performance of the models in specific sex and diagnostic
subgroups.

RESULTS
Patient characteristics and outcomes
Characteristics of patient cohorts used in the study are described in
Table 1. The average age of patients at the time of the ECG in both
the development and holdout sets was 65.8 years. Recall, however,
that we randomly selected one ECG per patient from the holdout
set to use for the final evaluations. The average age in this latter set
was slightly lower at 62.6 years. This is likely because older patients
had more ECGs than younger ones. Similarly, men had more ECGs,
so the proportion of men was slightly lower in the random
evaluation set than in the development or holdout sets (54.7% vs
56.7%). This pattern was observed for some of the ECG
measurements (e.g., mean of QRS duration: 97.9 vs 101.3 ms; QT
interval 395.1 vs 399.8ms), comorbidities (e.g., heart failure: 4.1% vs
6.2%; atrial fibrillation 9.2% vs 15.5%) as well as lab values (e.g.,
troponin I 2.0 vs 2.2 µg/L; creatinine 107.5 vs 116.5 µmol/L, Table 2).
The models for 30-days, 1-year, and 5-year mortality were

trained on 146,173, 141,072, and 111,020 patients and evaluated
on 97,144, 89,379, and 55,650 patients, respectively (Fig. 1). In our
evaluation set of one random ECG per holdout patient, 7,399
(7.6%), 15,506 (17.3%), 18,302 (32.9%) had died at 30 days, 1 year,
and 5 years, respectively. Similarly, for the subset of ECGs for
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which lab values were available, the models for 30-day, 1-year, and
5-year mortality were trained on 84,239, 78,340, and 42,742
patients and evaluated on 56,059, 49,748, and 21,796 patients
respectively (Supplementary Fig. 1). In the lab evaluation set, 4,907
(8.8%), 9,668 (19.4%), and 8,352 (38.3%) had died at the above-
mentioned time-points, respectively.

Model Comparisons
The comparisons of model performances are presented in Fig. 2
and Table 3. We used age and sex features alone to establish a
baseline model performance, which had an area under the
receiver operating characteristic curve (AUROC) (mean and 95%
confidence interval) of 0.680 (0.646–0.715) for 30-day, 0.716

Table 1. Characteristics of patient cohorts used in the study.

Full Data (n= 1,605,268) Development set
(n= 964,741)

Holdout set
(n= 640,527)

Random ECG per patient in
holdout seta (n= 97,631)

Age (years) 65.80 ± 17.25 65.77 ± 17.22 65.85 ± 17.29 62.57 ± 18.59

Sex (Male in %) 56.73 56.81 56.6 54.73

ECG measurements

Atrial rate 85.60 ± 46.15 85.56 ± 46.11 85.67 ± 46.20 84.06 ± 40.30

P duration 155.92 ± 116.60 156.00 ± 116.39 155.79 ± 116.91 163.96 ± 114.06

RR interval 790.81 ± 213.11 790.90 ± 212.63 790.68 ± 213.83 790.89 ± 204.35

Q wave onset 508.84 ± 6.51 508.82 ± 6.29 508.87 ± 6.82 509.04 ± 6.17

Fridericia Rate-Corrected QT
interval

434.86 ± 38.05 434.96 ± 38.04 434.71 ± 38.07 429.55 ± 35.23

Heart Rate 81.64 ± 23.22 81.61 ± 23.18 81.69 ± 23.28 81.13 ± 21.94

PR interval 169.34 ± 38.46 169.44 ± 37.66 169.18 ± 39.65 165.99 ± 33.65

QRS duration 101.36 ± 24.26 101.40 ± 24.23 101.31 ± 24.30 97.89 ± 21.66

QT interval 399.81 ± 54.83 399.94 ± 54.74 399.63 ± 54.96 395.10 ± 51.41

Bazett’s Rate-Corrected QT
interval

455.02 ± 40.09 455.10 ± 40.09 454.89 ± 40.09 449.23 ± 37.16

Frontal P axis 44.85 ± 35.52 44.81 ± 35.41 44.91 ± 35.69 45.66 ± 32.19

Frontal QRS axis in Initial 40ms 27.50 ± 46.30 27.44 ± 46.37 27.59 ± 46.20 28.48 ± 42.12

Frontal QRS axis in Terminal
40ms

45.36 ± 88.15 45.74 ± 88.28 44.80 ± 87.96 46.24 ± 84.64

Frontal QRS axis 19.98 ± 54.37 20.04 ± 54.38 19.88 ± 54.37 22.68 ± 49.81

Frontal ST wave axis 90.94 ± 88.23 90.98 ± 88.07 90.87 ± 88.48 79.23 ± 85.11

Frontal T axis 55.70 ± 67.76 55.48 ± 67.60 56.03 ± 68.00 47.97 ± 59.90

Horizontal P axis 20.69 ± 47.30 20.63 ± 47.14 20.77 ± 47.52 21.01 ± 41.15

Horizontal QRS axis in Initial
40ms

27.79 ± 48.39 27.86 ± 48.17 27.69 ± 48.71 30.20 ± 42.68

Horizontal QRS axis in
Terminal 40ms

34.10 ± 129.50 33.94 ± 129.40 34.35 ± 129.66 26.67 ± 125.58

Horizontal QRS axis −0.91 ± 78.19 −1.11 ± 77.91 −0.61 ± 78.62 −4.03 ± 69.27

Horizontal ST wave axis 97.02 ± 64.99 96.98 ± 65.00 97.09 ± 64.97 91.75 ± 60.20

Horizontal T axis 64.46 ± 58.98 64.27 ± 58.96 64.73 ± 59.01 59.30 ± 53.05

Comorbidities

Peripheral Vascular Disease 33,518 (2.09%) 19,714 (2.04%) 13,804 (2.16%) 2144 (2.20%)

Cerebrovascular Disease 54,349 (3.39%) 33,191 (3.44%) 21,158 (3.30%) 4252 (4.36%)

Hypertension 350,859 (21.86%) 210,275 (21.80%) 140,584 (21.95%) 15,387 (15.76%)

Dementia 133,963 (8.35%) 80,037 (8.30%) 53,926 (8.42%) 8849 (9.06%)

Chronic Pulmonary Disease 31,764 (1.98%) 19,215 (1.99%) 12,549 (1.96%) 2078 (2.13%)

Diabetes Mellitus 120,260 (7.49%) 71,860 (7.45%) 48,400 (7.56%) 5684 (5.82%)

Renal Disease 163,262 (10.17%) 96,924 (10.05%) 66,338 (10.36%) 8800 (9.01%)

Liver Disease 20,268 (1.26%) 12,062 (1.25%) 8206 (1.28%) 1079 (1.11%)

Cancer 18,905 (1.18%) 11,707 (1.21%) 7198 (1.12%) 1346 (1.38%)

NSTEMI 93,946 (5.85%) 55,632 (5.77%) 38,314 (5.98%) 8699 (8.91%)

STEMI 162,274 (10.11%) 96,828 (10.04%) 65,446 (10.22%) 6534 (6.69%)

Heart Failure 100,206 (6.24%) 60,381 (6.26%) 39,825 (6.22%) 4049 (4.15%)

Atrial Fibrillation 249,325 (15.53%) 150,055 (15.55%) 99,270 (15.50%) 8958 (9.18%)

ECG measurements and Comorbidities are expressed in terms of the number of ECG instances.
aDescriptives are provided as mean ± standard deviation using one iteration of random ECG sampling in the holdout set. ECG electrocardiogram, N number,
NSTEMI non-ST-elevation myocardial infarction, STEMI ST-elevation myocardial infarction.
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(0.704–0.723) for 1-year and 0.776 (0.765–0.787) for 5-year
mortality. The deep learning (DL) model with ECG traces alone
had a significantly higher performance with AUROC of 0.843
(0.838–0.848), 0.812 (0.808–0.816), and 0.798 (0.792–0.803) for 30-
day, 1-year, and 5-year prediction, respectively (DeLong Test, all
p < 0.001). Using age and sex along with ECG traces showed
further small but significant improvements with AUROC of 0.852
(0.847–0.857), 0.826 (0.822–0.830) and 0.828 (0.824–0.832) for the
three time points (DeLong Test, all p < 0.001). DL with ECG traces
showed significantly better performance than XGBoost (XGB) with
ECG measurements for all the three time points (DeLong Test, all
p < 0.001).
DL with ECG traces, age and sex was the best model in this
comparison, with AUROCs consistently higher than 0.82. XGB with
ECG measurements did not perform better than just age and sex
for 1-year (DeLong Test, p= 0.57), and was significantly worse
than just age and sex for 5-year (DeLong Test, p < 0.001); however
DL with ECG traces still provided relevant information to the
prediction and significantly outperformed the baseline age and
sex model at all time-points (DeLong Test, p < 0.001)—thereby
emphasizing the prognostic utility of DL models based on ECG
traces over typical models using ECG measurements. Table 3
shows the superior performance of DL models with ECG traces in
terms of area under the precision-recall curve (AUPRC), F1-Score,
Brier Score, and other measures.

Risk groups. We derived five risk groups—‘very low’, ‘low’,
‘medium’, ‘high’, ‘very high’ risk groups based on 20 percent
cut-points (0–20%, 20–40%, etc.) of predicted probability of death
from our main models (DL: ECG Trace, age, sex) in the holdout set
(Fig. 3 for 1-year mortality, Supplementary Fig. 2 for other time
points). Percentage of observed deaths in each predicted risk
group showed good calibration with a steady increase across the
risk groups (8.6%, 34.6%, 52.3%, 70.9%, and 78.9% death in the
‘very low’, ‘low’, ‘medium’, ‘high, and ‘very high’ risk groups,
respectively).

Model performance in diagnostic and sex subgroups
Mortality rates differed significantly across the diagnostic groups
of interest (Supplementary Fig. 3) with patients with heart failure
having the highest mortality at each time point. Figure 4 shows
the performance of our models in these different diagnosis
subgroups. The models performed better in patients with ST-
Elevation Myocardial Infarction (STEMI) and Non-ST-Elevation
Myocardial Infarction (NSTEMI) (AUROC of 0.867 and 0.882 for
1-year mortality, respectively) than in the overall cohort. The
performance of the model in the other subgroups (heart failure,
diabetes, and atrial fibrillation) was lower than in the overall

holdout cohort. Mortality rates were higher among men than
women (Supplementary Fig. 4). In general, the prognostic models
performed slightly better in men than in women (Fig. 4).

Model performance with addition of lab features
We explored the improvement of model performance with
addition of lab features to ECG models. We considered XGB with
age, sex, and lab features as the baseline model for comparison.
ECG models had higher AUROCs than the baseline models for all
time points, even without lab values, but the difference was
smaller for longer range predictions. Addition of lab features
significantly improved the model performances throughout,
across models and time points, however, the gains in performance
were small in magnitude (0.99% on average, DeLong Test, all
p < 0.001). Again, the overall DL model with ECG traces, age, sex,
and lab was the best performing model in this comparison (Fig. 5
and Supplementary Table 1).

Model explanations
Figure 6 depicts the results of Gradient-weighted Class Activation
Mapping (GradCAM), highlighting areas of ECG with higher
contribution and relevance towards the model’s mortality predic-
tion performance. The highlighted regions are not lead-specific,
and are driven based on data from all 12 leads. SHapley Additive
exPlanations (SHAP) analysis of XGB model showed that higher
age, lower RR interval, horizontal QRS axis (conditional effect),
higher Bazett’s rate-corrected QT interval, male sex and lower PR
interval contributed the most to the 1-year mortality. The addition
of lab features highlighted contributions of lower hemoglobin,
lower glomerular filtration rate (GFR), lower troponin I, higher
creatinine, very high or low sodium and high potassium (Fig. 7 for
1-year mortality and Supplementary Fig. 5 for other time points).

Supplementary analyses
We conducted several supplementary analyses to demonstrate
the robustness of our models. First, we benchmarked the
performance of our models against the custom-designed DL
architecture employed by Raghunath and colleagues14. Training
our dataset with the architecture specified in their study, resulted
in an AUROC of 0.796 (0.792, 0.800) for 1-year mortality prediction,
compared to 0.826 (0.822, 0.83) with our architecture. Our ResNet-
based DL model showed small but statistically significant
improvement in AUROC performance compared to the DL
architecture employed by the Raghunath et al for all three time-
points (DeLong Test, all p < 0.001, Supplementary Fig. 6).
Second, we evaluated our primary DL model on: (a) a holdout

set which included the poor-quality ECGs that were previously

Table 2. Lab characteristics of patient cohorts used in the study (as mean ± standard deviation).

Full Data (n= 601,307) Development set
(n= 361,585)

Holdout set (n= 239,722) Random ECG per patient in holdout set
(n= 30,076)

Age (years) 64.82 ± 17.57 64.90 ± 17.53 64.70 ± 17.62 64.74 ± 17.87

Sex (Male in %) 55.84 55.81 55.88 56.63

Lab measurements

GFR (mL/min) 66.01 ± 28.03 65.85 ± 28.04 66.25 ± 28.03 69.66 ± 27.94

Creatinine (umol/L) 116.46 ± 117.03 117.20 ± 119.62 115.35 ± 113.00 107.52 ± 100.63

Hemoglobin (g/L) 126.53 ± 23.23 126.46 ± 23.27 126.65 ± 23.18 127.81 ± 23.32

Potassium (mmol/L) 4.02 ± 0.64 4.02 ± 0.64 4.02 ± 0.63 3.99 ± 0.62

Sodium (mmol/L) 137.39 ± 4.35 137.38 ± 4.36 137.41 ± 4.33 137.39 ± 4.39

Troponin I (ug/L) 2.24 ± 10.07 2.23 ± 10.09 2.24 ± 10.04 1.99 ± 9.49

ECG electrocardiogram, GFR glomerular filtration rate, N number.
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excluded from the analysis cohort; and (b) a poor-quality ECG
set alone (Supplementary Table 2). We found that our DL model is
fairly robust to the ECG signal artifacts and acquisition issues.
Addition of poor-quality ECGs (29,741 ECGs) to the original
holdout set (640,527 ECGs) did not change the AUROC results
(reduction of only 0.25% for 1-year mortality). Further, evaluation
on poor quality ECGs alone still showed >80% on AUROC score for
all three time-points. There was a 3.4%, 2.6%, and 2.5% drop in the
AUROC compared to the original evaluation (which excluded poor
quality ECGs) for 30-day, 1-year and 5-year time-points,
respectively.

Third, to examine the performance of our models across
hospitals, we conducted a leave-one-hospital out validation for
each of the two tertiary hospitals (H1 and H2) among the 14
hospitals included in our study. To ensure that our training and
testing sets were completely disjoint we excluded from our
validation ECGs of patients who were admitted to both the
training and testing hospital during the study period (Supple-
mentary Fig. 7). We found the performance of leave-one-hospital
out validation to be comparable to performance reported on the
overall validation set (Supplementary Table 3). Compared to the
main validation results the AUROC performance was higher by

Fig. 1 Study cohort, data splits and evaluation scheme. Flowchart of study design, showing sample sizes for overall study, experimental
splits and different outcomes. We divided the overall ECG dataset into a random split of 60% for the model development (for training (90%
subset of the 60%) and fine tuning (10% subset of the 60%) the model), and the remaining 40% as the holdout set for validation. Patients with
more severe illnesses are expected to undergo ECGs more frequently, and more ECGs may be acquired at terminal stages when patients are
monitored more regularly. To mitigate potential bias in model performance due to differential representation of patient phenotypes, we
evaluated our models using a single randomly-selected ECG per patient from their multiple episodes in the holdout set.

W. Sun et al.

4

npj Digital Medicine (2023)    21 Published in partnership with Seoul National University Bundang Hospital



1.27% (86.46–85.19%) for 30-day, 1.25% (83.83–82.58%) for 1-year,
and 2.89% (85.69–82.8%) for 5-year models in H1 validation; but
lower by 3.6% (85.19–81.59%) for 30-day, 2.41% (82.58–80.17%)
for 1-year, and 1.84% (82.8–80.96%) for 5-year models in H2
validation.
Fourth, we examined the performance of our models on the

entire holdout set, including multiple ECGs for holdout patients.
Overall, 78,250 (80.55%), 71,636 (80.15%), and 43,629 (78.40%)
patients had more than one ECG available for 30-day, 1-year, and
5-year predictions in our holdout set. The performance of our
models after inclusion of multiple ECGs was comparable to their
performance in the main analysis based on one random ECG per
patient (Supplementary Table 4 and Supplementary Fig. 8). In
addition, we found consistency in prediction across ECGs for
patients with multiple ECGs (85.05%, 82.27%, and 82.25% patients
had at least 50% consistently accurate predictions across their
multiple ECGs at 30-days, 1-year, and 5-years, Supplementary
Fig. 9).

DISCUSSION
Our study, based on a large, population-based cohort of patients
with universal access to healthcare, demonstrates the utility of
machine learning models based on ECG data to identify patients
at high-risk for short- and longer-term mortality at presentation to
an emergency department or hospital. We found that DL (ResNet)
models based on 12-lead ECG traces perform better in predicting
mortality than gradient-boosting models (XGBoost) based on
routinely-reported ECG measurements. In a validation cohort of
approximately 100,000 patients, ECG traces offered the most
prognostic information, with the addition of patient age and sex
offering small incremental improvements in model performance.
Supplementary analyses demonstrated the robustness of our
models’ performance in poor quality ECGs, across hospitals, and
when multiple ECGs for each patient were included. Our study is
the first to examine the added value of incorporating lab data, and
we found that models based on the combined ECG, lab, and
demographic data (patients’ age and sex) performed the best in
predicting both short and long-term mortality. These findings
illustrate how machine learning models can be employed to
convert routinely collected data in clinical practice to knowledge

that can be used to augment decision-making at the point of care
as part of a learning healthcare system.
To our knowledge, only one other study has examined the

prognostic utility of ECG-based machine learning models at a
population-level. The study by Raghunath et al.14 was based on
approximately 1.2 million ECGs from just over 250,000 patients,
collected over a 34-year period from a single large health care
system (Geisinger) in the United States. Their model for 1-year
mortality based on ECG traces, age, and sex achieved an AUROC of
0.876 in a test cohort of 168,914 compared to an AUROC of 0.826
in our validation cohort consisting of 89,379 patients. There are
several differences in our Canadian study and Raghunath et al.’s
study from the US. Our cohort was older (average age 62.6 ± 18.6
versus 58 ± 18 years) and had significantly higher 1-year mortality
rates compared to the US cohort (17.4% versus 8.4% 1-year
mortality rates in the holdout sets). The higher mortality in Canada
is consistent, with previously reported inter-country differences in
specific patient populations and has been attributed to differences
in how patients are managed in the two healthcare systems15–17.
Raghunath et al reported a higher AUROC associated with their
XGB model based on age and sex alone (0.774), while our model
predicting 1-year mortality based on patient’s age and sex had an
AUROC of 0.716. Our study used standard DL models (ResNet) and
was based on ECGs from a single equipment manufacturer
(Philips); while the US study used custom-designed DL architec-
ture and was based on ECGs from different equipment
manufacturers. Implementation of their DL architecture on our
data resulted in small but significantly lower performance
compared to our standard DL models, suggesting that domain
shifts in the training and validation scenarios may be playing a
role. Despite these significant differences in patients, health
systems, equipment, and model structure, both studies found a
similar degree of improvement in performance associated with
the addition of ECG traces. These findings highlight the value, and
potential generalizability, of ECG-based DL models for mortality
prediction.
Our study extends the work by Raghunath et al.14 by

developing models for both shorter-term (30-day) and longer-
term (5-year) mortality outcomes; and examining the models’
performance in males and females separately. We found that our
DL models performed consistently well at both additional time

Fig. 2 Comparison of model performances. Comparison of AUROC model performances for DL and XGB models with ECG traces and
measurements. Error bars show 95% confidence intervals around the mean. DL with ECG traces, age and sex was the best model in this
comparison, with AUROCs consistently higher than 0.82. AUROC Area under the receiver operating characteristic curve; DL deep learning; ECG
electrocardiogram; XGB XGBoost.
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points (AUROC of 0.85 at 30-days and 0.83 at 5-years) and similarly
in both sexes. However, we observed that the performance of the
baseline age+ sex model gets higher and closer to ECG only DL
models for longer-term predictions. This suggests that while there
may be clear advantages related to the application of ECG
prognostication in short- to intermediate-term guiding of treat-
ments, using ECGs alone without age and sex features might not
have sufficient predictive value for 5-year mortality outcomes.
Also, we found differential model performance across diagnostic
subgroups, with the models performing better for patients with
myocardial infarction than other disease groups.

We believe our study is the first to demonstrate the incremental
prognostic value gained from including data on select lab tests.
We built our models in a sequential manner, starting with just age
and sex, and adding on ECG traces or measurements, and
subsequently lab data. The AUROC for 1-year mortality model
increased from 0.81 for the model based on age, sex, and ECG
traces to 0.83 for the model based on age, sex, ECG traces, and lab.
Lab data may offer more prognostic information in specific patient
populations (e.g., patients with acute coronary syndromes or renal
disease, etc.) and the addition of other lab measures such as AST,
ALT, and HbA1c may improve our models’ performance. These
examinations are being planned as part of future research studies.

Fig. 3 Predicted risk groups for 1-year mortality. aWe derived five risk groups - ‘very low’, ‘low’, ‘medium’, ‘high’, ‘very high’ risk groups based
on 20 percent cut-points (0 - 20%, 20% - 40%, etc.) of predicted probability of death from our main models (DL: ECG Trace, age, sex) in the
holdout set. b Percentage of observed deaths in each predicted risk group showed good calibration with a steady increase across the risk
groups (8.6%, 34.6%, 52.3%, 70.9%, and 78.9% death in the ‘very low’, ‘low’, ‘medium’, ‘high, and ‘very high’ risk groups, respectively). DL deep
learning, ECG electrocardiogram.

Fig. 4 Model performances in diagnostic and sex-based subpopulations. a Performance of DL: ECG traces, Age, Sex models in different
primary diagnosis subgroups. The models performed better in patients with STEMI and NSTEMI (AUROC of 0.867 and 0.882 for 1-year
mortality, respectively) than in the overall cohort. The performance of the model in the other subgroups (heart failure, diabetes and atrial
fibrillation) was lower than in the overall holdout cohort. b The prognostic models performed slightly better in men than in women. AUROC
Area under the receiver operating characteristic curve, DL deep learning, ECG electrocardiogram, NSTEMI non-ST elevation myocardial
infarction, STEMI ST elevation myocardial infarction.
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DL models with convolutional neural networks are considered
black boxes when it comes to identifying and interpreting
patterns used by the model for prognostication. We have
attempted techniques such as creating GradCAM heatmaps for
that purpose, which suggest that PR intervals, QRS complexes and
ST-T changes, especially the initial portion of the QRS complex
contribute the most to mortality prediction. This was mostly
consistent across different disease conditions, however, almost all
the ECG segments had contributions to prognostication in the DL
model in patients with heart failure. It should be noted that these
visualization techniques are an area of active research, and it is
challenging to derive clinically meaningful interpretations from
ECG signals with multiple heart beats. As a complement, we used
SHAP analysis for XGB models, which highlighted a few ECG
parameters (such as lower RR interval, lower horizontal QRS axis,
higher QT interval, and lower PR interval) which contributed the
most to mortality prediction at the different follow-up periods.
Our study has some limitations. First, all ECG in our study were

from the same manufacturer (Philips Intelligence System). The

extent to which our findings are generalizable to ECGs from other
equipment manufacturers needs to be established. Second, lab
data were available only from 2012 onwards and not for all
patients. One-year mortality rates were slightly higher among
patients with lab data (19.4%) than among those without (17.3%).
While addition of lab features resulted in small but significant
improvements in model performance, it is difficult to assess
whether this was related to the higher rate of adverse outcomes in
this sub-group. Third, as mentioned above, the list of lab tests
included in our models is not comprehensive. Fourth, our random
ECG per patient cohort was slightly younger with less male
patients and less comorbidities compared to the total holdout set
which is attributed to more ECGs being done in older, male, and
clinically-complicated patients with more comorbidities; however,
we found substantial consistency in prediction across ECGs among
patients with multiple ECGs in the holdout set. And lastly, ECG
measurements used in XGB models were provided through Philips
machines, and were not core-lab-read or human expert-curated.

Fig. 5 Comparison of model performances with and without lab features. Error bars show 95% confidence intervals around the mean. ECG
models had higher AUROCs than the baseline model (XGB: Age, Sex, Lab) for all time points, even without lab values, but the difference was
smaller for longer range predictions. Addition of lab features significantly improved the model performances throughout, across models and
time points, however the gains in performance were small in magnitude (0.99% on average, DeLong Test, all p < 0.001). Overall, the DL model
with ECG traces, age, sex and lab was the best performing model in the comparison. AUROC Area under the receiver operating characteristic
curve, DL deep learning, ECG electrocardiogram, XGB XGBoost.

Fig. 6 GradCAM heatmap for 1-year mortality. Representative ECG traces were chosen with primary diagnoses of AF, HF, STEMI, and NSTEMI.
The darker areas in each trace on GradCAM denote the areas with the most contribution to ResNet DL: ECG model’s 1-year mortality
prediction. The highlighted regions are not lead-specific, and are driven based on data from all 12 leads. AF atrial fibrillation, DL deep learning,
ECG electrocardiogram, HF heart failure, STEMI ST-elevation myocardial infarction, NSTEMI Non-ST-elevation myocardial infarction.
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In conclusion, our study demonstrates that ECG-based DL
models can be used to identify patients who are at high risk for
short- or longer-term mortality. These models perform equally well
in males and females and can be augmented with the inclusion of
data on routinely performed lab tests. Future studies are being
planned to assess the utility of providing risk assessment based on
ECG data in clinical practice.

METHODS
Datasets
The province of Alberta, Canada has a single-payer (Ministry of
Health: Alberta Health) and single-provider (Alberta Health
Services) healthcare system. The ~4.4 million residents of the
province have universal access to hospital, ambulatory, laboratory,
and physician services.
For this study, ECG data were linked with the following

administrative health databases using a unique patient health
number: (1) the Discharge Abstract Database (DAD) containing
data on hospitalizations including admission date, discharge date,
most responsible diagnosis, up to 24 other diagnoses, and
discharge status (transfer, discharge home, died) (2) the National
Ambulatory Care Reporting System (NACRS) database of all
hospital-based outpatient clinic (including emergency depart-
ment) visits, which includes date of admission, most responsible
diagnosis, up to 9 other diagnoses, and discharge status; (3) the
Alberta Health Care Insurance Plan Registry (AHCIP), which
provides demographic information (age, sex) and date of death;
(4) the centralized lab data, and (5) the vital status death registry.
In case of conflicting mortality status or dates (1.1% of patients),
the vital status registry was given priority over the DAD, NACRS,
and AHCIP registry records.
This study was approved by the University of Alberta Research

Ethics Board (Pro00120852). The ethics panel determined that the
research is a retrospective database review for which subject
consent for access to personally identifiable health information
would not be reasonable, feasible, or practical.

ECG data
The study used standard 12-lead ECG traces and ECG measurements
from the Philips IntelliSpace ECG system. ECG traces were voltage-
time series, sampled at 500 Hz for the duration of 10 s for each of 12
leads (500 ⋅ 10 ⋅ 12 voltage measurements per ECG). ECG
measurements are automatically generated by the ECG machine
manufacturer’s built-in algorithm (Supplementary Table 5)18. These
latter measurements include atrial rate, P duration, RR interval, Q

wave onset, Fridericia rate-corrected QT interval, heart rate, PR
interval, QRS duration, QT interval, Bazett’s rate-corrected QT interval,
frontal P axis, frontal QRS axis in the initial 40ms, frontal QRS axis in
the terminal 40ms, frontal QRS axis, frontal ST wave axis (equivalent
to ST deviation), frontal T axis, horizontal P axis, horizontal QRS axis in
the initial 40ms, horizontal QRS axis in terminal 40ms, horizontal
QRS axis, horizontal ST wave axis, and horizontal T axis.

Laboratory data
Centralized lab data at the population-level are available from
2012 onwards. Data on a select set of labs including creatinine,
glomerular filtration rate (GFR) calculated from creatinine,
haemoglobin, potassium, sodium, and troponin I were linked
with the ECG data if they occurred on the same day. Labs were
selected based on their association with adverse outcomes,
routine use in practice, and if they were available for a significant
proportion of patients.

Analysis cohort
The study cohort consisted of patients hospitalized at 14 sites
between February 2007 and April 2020 in Alberta, Canada. Our
data consisted of 2,015,808 ECGs, 3,336,091 emergency depart-
ment visits, 1,071,576 hospitalizations, and 260,065 patients.
Concurrent healthcare encounters for a patient (emergency
department visits and/or hospitalizations) that occurred within a
short period of time were considered to be transfers (for example,
from emergency department to hospital admission or from
community hospital to tertiary hospital) and grouped into
episodes. The flowchart of the decision tree used for episode
definition is outlined in Supplementary Fig. 10.
An ECG record was linked to a healthcare episode if the

acquisition date was within the timeframe between the admission
date and discharge date of an episode (Supplementary Fig. 11).
Poor quality ECGs were identified via warning flags generated by
the ECG machine manufacturer’s built-in quality algorithm for the
presence of muscle artifact, AC noise, baseline wander, QRS
clipping, and leads-off. After excluding the ECGs that could not be
linked to any episode, ECGs of patients <18 years of age, as well as
ECGs with poor signal quality, our analysis cohort consisted of
1,605,268 ECGs from 748,773 episodes in 244,077 patients. See Fig.
1 for the flowchart of study design, showing sample sizes for
overall study, experimental splits and different outcomes. In
supplementary analyses, we evaluated the performance of our
models across different hospitals and on the poor-quality ECGs
that were excluded from the main study.

Fig. 7 SHAP based feature importance for 1-year mortality. a SHAP analysis of the XGBoost models with ECG measurements, age, sex
showed that higher age, lower RR interval, horizontal QRS axis (conditional effect), higher Bazett’s rate-corrected QT interval, male sex and
lower PR interval contributed the most to the 1-year mortality. b The addition of lab features highlighted contributions of lower hemoglobin,
lower glomerular filtration rate (GFR), lower troponin I, higher creatinine, very high or low sodium and high potassium. The description of ECG
measurements is provided in the Supplementary Table 5.
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Our lab analysis sub-cohort included 601,307 ECGs from
330,637 episodes of 141,017 patients for whom data on all the
six labs of interest were available. On average, 41.9% of ECGs
could be linked to lab tests for each fiscal year from 2012 to 2019.
See Supplementary Fig. 1 for the flowchart of study design for the
model incorporating lab values which shows sample sizes for
overall sub-study, experimental splits and different outcomes.

Prediction tasks
This study focused on developing and evaluating ECG based
mortality models to predict the probability of a patient dying within
30-days, 1-year, and 5-years, starting from the day of ECG acquisition.
ECGs used in these models could have been acquired at any time
point during a healthcare episode (Fig. 8—left panel). The goal of the
prediction models is to output a calibrated probability of mortality,
which could be used in patient risk-assessment.
Patient’s ECG data are generally archived by healthcare facilities

as one of two formats: either (a) as a clinical report of summarised
ECG measurements such as QT interval, QRS duration etc or (b)
less commonly, as raw voltage time series of ECG signal tracings.
In order to facilitate wider applicability, we developed models to
accommodate either of these ECG formats. We used learning
algorithms that are appropriate for the data formats, namely
ResNet based DL for the information-rich voltage time series and
gradient boosting-based XGBoost (XGB) for the ECG measure-
ments (see Fig. 8, right panel and ‘learning algorithms’ below).
XGB was chosen for its state-of-art performance with structured
tabular data, fast training time, missing value support, and
explainability functions19. Likewise, we used ResNet architecture
for DL based on its successful performance in previous studies
with comparable datasets of ECG tracings20. In supplementary
analysis, we benchmarked the performance of our standard DL
models against custom-designed DL architecture used by a
previous study which utilized deep convolutional neural networks
(DNN) using five branches to accommodate varying durations of
ECG acquisition across the leads14.
In order to examine the incremental predictive value that

demographic (age, sex), and lab data add to the performance of
models trained on ECGs only, we developed the models in the

following sequential manner: (a) ECG only, (b) ECG+ age, sex and
(c) ECG+ age, sex+ lab, where ECG data could be either voltage-
time traces or measurements.
ECGs of patients that were censored before the 30-day, 1-year, and

5-year time-points were excluded from analysis as their death status
was uncertain and those that were censored after the time-points
were considered as ‘alive’. For training, ECGs of patients with events,
regardless of completeness of follow-up, were retained to maximize
learning (e.g., for 5-year mortality, we retained ECGs of patients who
entered the cohort after 2015-03-31 but died before 2020-03-31).
However, for evaluation, all ECGs without complete follow up were
excluded, irrespective of their death or censoring status (i.e., for
5-year mortality, we excluded all ECGs after 2015-03-31 in the
evaluation set, as they would not have had the requisite five years of
follow-up). The number of ECGs, episodes and patients used for
modeling each time point in overall data and in experimental splits
are presented in Fig. 1 and Supplementary Table 6.

Learning algorithms
We employed a classification methodology with binary labels, i.e.,
dead or alive within 30 days, 365 days (1 year), or 1825 days (5
years) of ECG acquisition date respectively to estimate the
probability of a new patient surviving at least 30 days, 365 days,
1825 days following the ECG acquisition. Since the input for the
models that used ECG measurements was structured tabular data,
we trained gradient boosted tree ensembles (XGB) models,
whereas we used deep convolutional neural networks for the
models with ECG voltage-time series traces19,20. For both XGB and
DL models, we used 90% of the development data to train the
model, and used the remaining 10% as a tuning set to track the
performance loss and to “early stop” the training process, to
reduce the chance of overfitting (different from holdout data)21.
The XGB model used log-likelihood as the objective function.

The hyperparameters such as maximum tree depth, minimum
child weight and scale positive weight were tuned based on 5-fold
grid-search internal cross validation within the training sets. The
models were learnt for a maximum of 200 epochs, and the
learning process was stopped if performance loss in the tuning set
did not reduce for 10 consecutive epochs.

Health Care Episode 
( Hospitalization / Emergency Visit ) Death

30-days 1-year 5-year

Features
ECG

+ Age,Sex 
+ Lab  

ECG

Voltage Time-Series

ECG Measurements

Deep Learning

XGBoost

Features
ECG 

+ Age,Sex 

Risk-Score 
Calibrated Probability of

Mortality

Features
ECG

 

Time of Prediction  
Anytime during the Episode

(a) (b)

Fig. 8 Schematic of prediction tasks, feature types and choice of learning algorithms. a This study focused on developing and evaluating
ECG based mortality models to predict the probability of a patient dying within 30-days, 1-year and 5-years, starting from the day of ECG
acquisition. ECGs used in these models could have been acquired at any time point during a healthcare episode. Models included features with
i ECG only, ii ECG+ age, sex, and iii ECG+ age, sex+ lab tests. The goal of the prediction models is to output a calibrated probability of mortality,
which could be used in patient risk-assessment. b Patient’s ECG data are generally archived by healthcare facilities as one of two formats: either
i as a clinical report of summarised ECG measurements such as QT interval, QRS duration etc. or ii less commonly, as raw voltage time series of
ECG signal tracings. In order to facilitate wider applicability, we used learning algorithms that are appropriate for the data formats, namely ResNet
based deep learning for the information-rich multi-channel voltage time series and gradient boosting-based XGBoost for the ECG measurements.
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For the DL model, we implemented a convolutional neural
network (CNN) based on the residual neural network architec-
ture22, consisting of a convolutional layer, 4 residual blocks with 2
convolutional layers per block, followed by a dense layer (total of
6,400,433 model parameters). We used batch normalization, ReLU,
and dropout after each convolutional layer. Our architecture was
based on a previously published large-scale study to identify
abnormalities in 12-lead ECGs with some modifications to
accommodate tabular data input and mortality output (Supple-
mentary Fig. 12)20. Each ECG instance was loaded as a 12 × 4096
numeric matrix. If additional features such as age, sex or lab
features were used, they were input as binary feature (sex; 1
feature) or continuous values (age, lab features; 1+ 6 features),
then passed to a 5N-hidden-unit layer (where N is number of
tabular features), then concatenated with the dense layer, and
finally passed to a sigmoid function to produce the output. Binary
cross-entropy was used as the loss function with the initial
learning rate of 1 × 103, Adam optimizer23, ReLU activation
function, kernel size of 16, batch size of 512, and dropout rate
of 0.2 with other hyperparameters set to default. Models were
learnt for a maximum of 50 epochs. The learning rate was reduced
to 1 × 10−5 if there was no improvement in tuning loss for seven
consecutive epochs, and the learning process was stopped if loss
in the tuning set did not reduce for nine epochs. The models were
implemented using Tensorflow 2.2 and XGBoost 1.5.1 in Python
3.8. We trained all our models on the NVIDIA Driver version 418.88
with 8 Tesla V100-SXM2 GPUs and 32 GB of RAM per GPU. Each DL
model took approximately 30 min to train per epoch.

Evaluation and visualization
Evaluation metrics. We divided the overall ECG dataset into a
random split of 60% for the model development (for training (90%
subset of the 60%) and fine tuning (10% subset of the 60%) the
model), and the remaining 40% as the holdout set for validation
(Fig. 1 and Supplementary Table 6 for main model without lab,
Supplementary Fig. 1 for secondary model with lab). We ensured
that ECGs from the same patient were not shared between the
development and evaluation data set. We reported the following
performance metrics on the holdout set—area under the receiver
operating characteristic curve (AUROC, also known as C-index) and
area under the precision-recall curve (AUPRC). Also, we binarized
prediction probabilities into dead/alive classes using optimal cut-
points derived from training set Youden’s index24, and generated
F1 Score, Specificity, Recall, Precision and Accuracy. Further, we
evaluated calibration of our models to see whether predicted
probabilities agree with observed proportions using Brier Score
(baseline value is 25%; smaller score indicates better calibration)25.

Evaluation sampling. Patients with more severe illnesses are
expected to undergo ECGs more frequently, and more ECGs may
be acquired at terminal stages when patients are monitored more
regularly. This variability in timing and frequency of ECGs across
patients could lead to potential bias in model performance due to
differential representation of patient phenotypes. To mitigate such
bias, we evaluated our models using a single randomly-selected
ECG per patient from their multiple episodes in the holdout set
(Fig. 1 and Supplementary Table 6 for main model without lab,
Supplementary Fig. 1 for secondary model with lab). This sampling
strategy could be considered to be more representative of
deploying the model in a real-world scenario on novel ECG from
an unseen patient, rather than using the most recent ECG or the
ECG that was taken the closest to the patient’s death (see ‘Model
Comparisons’ section for details). In supplementary analyses, we
examined our models’ performance on the entire holdout set,
including multiple ECGs per patient, as well as examined the
consistency of prediction across ECGs for patients with
multiple ECGs.

Sex and diagnostic subgroups. We investigated our models’
performance in specific patient subgroups, based on diagnoses
of interest and patient sex, in our holdout set. The diagnostic
subgroups were based on the most responsible diagnosis
assigned at discharge and included the following: non-ST-
elevation myocardial infarction (NSTEMI), ST-elevation myocardial
infarction (STEMI), heart failure, atrial fibrillation, diabetes mellitus,
and hypertension. The ICD codes used for identifying these
conditions are provided in Supplementary Table 7.

Model comparisons. For each evaluation, we used 10 iterations of
random selection of a single ECG per patient to demonstrate
consistency in the model performance. During the training of
these models, we used all available ECGs in the training set along
with corresponding mortality labels. Same training and testing
splits (including the random selections) were used for the various
modeling scenarios, so that performance could be compared
directly. The performance scores were compared between models
by bootstrapping 100 instances with sampling with replacement
from each of 10 iterations of random ECG selection mentioned
above, to generate a total of 1000 bootstrap replicates (Supple-
mentary Fig. 13). The difference in the model performances was
evaluated based on the overlap of 95% confidence intervals of
mean AUROC scores of the compared models. We have also
reported p-value of DeLong’s test26 to show if the AUROCs of two
models were statistically significantly different.

Visualizations. We used Gradient-weighted Class Activation
Mapping (GradCAM) to visualize the gradient activation maps
that contributed to the model’s prediction of mortality in our DL
models27. To achieve this, the last convolutional layer that
contains high-level information of the deep CNN model and
representative traces from the evaluation set were selected. Also,
we used SHAP (SHapley Additive exPlanations) to identify the ECG
measurements that were key contributors to the average mortality
prediction in the XGB models28.
Our study has been reported according to the Transparent

reporting of a multivariable prediction model for individual
prognosis or diagnosis based on artificial intelligence (TRIPOD-AI)
guidelines29.
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