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Abstract

Pandemic outbreaks such as COVID-19 occur unexpectedly, and need immediate
action due to their potential devastating consequences on global health. Point-of-
care routine assessments such as electrocardiogram (ECG), can be used to develop
prediction models for identifying individuals at risk. However, there is often too
little clinically-annotated medical data, especially in early phases of a pandemic,
to develop accurate prediction models. In such situations, historical pre-pandemic
health records can be utilized to estimate a preliminary model, which can then
be fine-tuned based on limited available pandemic data. This study shows this
approach – pre-train deep learning models with pre-pandemic data – can work
effectively, by demonstrating substantial performance improvement over three
different COVID-19 related diagnostic and prognostic prediction tasks. Similar
transfer learning strategies can be useful for developing timely artificial intelligence
solutions in future pandemic outbreaks.

1 Introduction

Coronavirus disease (COVID-19), the infectious disease caused by the SARS-CoV-2 virus, led to a
worldwide pandemic beginning at end of 2019, with 546,363,985 confirmed cases and 6,336,802
deaths as of July 2022 [1]. Initially regarded as a respiratory infection, COVID-19 is now known
to affect all major systems in the body, including the cardiovascular system by causing myocardial
damage, vascular inflammation, plaque instability, and myocardial infarction [2]. COVID-19 patients
have shown ischemic changes, rate, rhythm abnormalities, and conduction defects in their electrocar-
diograms (ECG) [3]. In this context, machine-learned models that use ECG data could prove helpful
in recognizing patients who require urgent definitive management.

Moreover, the presence of cardiac involvement in COVID-19 is known to result in poor prognosis
and adverse outcomes [4]. Hence, monitoring the cardiac function is crucial for prompt identification
of the appropriate actions. The ECG, which provides important information about the structure and
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electrical activity of the heart, is a simple point-of-care diagnostic tool [5] that can be employed
to assess cardiovascular involvement in COVID-19 patients. Despite the massive impacts of the
novel coronavirus, most existing studies employing machine learning methods to predict COVID-19
outcomes using ECGs are conducted in limited data sizes (COVID-19 diagnosis prediction using
a public dataset of 2000 scanned ECG images [6–12] mortality prediction in COVID-19 patients
with 882 [13] and 1148 [14] ECG traces). In general, there are no prediction models that are trained
and tested on population-scale ECG voltage time-series data to identify who is most likely to test
positive for COVID-19; and among those who have COVID-19, who is most likely to suffer adverse
consequences.

In this study, we use population-scale administrative health records and large ECG datasets, with
two year coverage from the start of the pandemic (January 2020 to December 2021) to develop deep
learning (DL) models to predict diagnostic and prognostic outcomes in COVID-19. Accordingly, we
develop DL models to: (1) identify patients with COVID-19; and (2) identify COVID-19 patients
who are at higher risk of mortality. Further, we demonstrate that transfer learning from pre-pandemic
clinical records (Feb 2007 to Dec 2019) can be utilized to improve the prediction performance of
COVID-19 models.

2 Methods

In this study, we explored three COVID-19 related prediction tasks using 12-lead ECG tracing, age
and sex of patients, including:

1. Diagnosis prediction with a binary classification framework (predicting if a given patient
has COVID-19 or not).

2. Mortality prediction with a binary classification for 30-day mortality (i.e. if a patient with
COVID-19 will die within 30 days after the acquisition of ECG).

3. Mortality prediction on a continuous time-scale using an individualized survival distribution
(ISD) for each patient with COVID-19.

The province of Alberta, Canada has a single-payer (Ministry of Health: Alberta Health) and single-
provider (Alberta Health Services) healthcare system. The 4.4 million residents have universal
access to hospital, ambulatory, laboratory, and physician services. For this study, ECG data were
linked with the provincial-scale administrative health databases using unique patient health numbers.
These databases included information on inpatient hospitalizations, outpatient clinic and emergency
department (ED) visits, demographic information, and date of death. We used standard ECG
voltage-time series, sampled at 500 Hz for 10 seconds for each of 12 leads (500 x 10 x 12 voltage
measurements per ECG). We also used age and sex of the patients as additional features. An ECG
record was linked to a healthcare episode if the acquisition date was within the timeframe between
the admission date and discharge date of an episode. The COVID-19 diagnosis was identified using
the ICD-10 codes (U071, U073) [15] in the primary or secondary diagnosis fields of a healthcare
episode linked to a particular ECG. This study received ethics approval from the Health Research
Ethics Board at the University of Alberta (Pro00120852).

Our dataset consisted of 73,842 patients during the COVID-19 pandemic period (Jan 2020 - Dec
2021) who had taken 292,937 ECG tests overall. We excluded ECGs that could not be linked to
healthcare episodes, patients < 18 years of age, and ones with poor signal quality. Then, we split
our ECG dataset into the development dataset (random 60%: 33,197 patients with 119,761 ECGs,
used for training and internal validation) and holdout dataset (remaining 40%: 22,132 patients with
80,097 ECGs), while ensuring that ECGs from the same patient were not shared between the sets.
In addition, we also used a retrospective pre-pandemic dataset that included 260,774 patients with
1,992,415 ECG obtained between Feb 2007 to Dec 2019; see Figure 1).

First, we trained our models within the pandemic time frame (Jan 2020 to Dec 2021) and then we
extended our training to pre-pandemic time frame (Feb 2007 to Dec 2019) to compare the performance
improvement. Since the data on COVID-19 diagnosis was not available before the pandemic, we
used a model for predicting over 1414 ICD-10 codes (multi-label classification model previously
developed on pre-pandemic data evaluated using area under the receiver operating characteristic
curve (AUROC) [16]) as a pre-training model for the COVID-19 diagnosis task. Similarly, since data
on COVID-19 related deaths were not available before the pandemic, we used the all-cause mortality
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Figure 1: Datasets used for pre-training and then fine-tuning the COVID-19 prediction tasks

prediction model (again, previously developed on pre-pandemic data, unpublished) as a pre-training
model for the COVID-19 mortality task. Both of these pre-trained models were then fine-tuned on
COVID-19 specific predictions using the development set (60% of pandemic data) and evaluated on
hold-out set (40% of pandemic data); see Figure 1.

For the classification tasks, we implemented a convolutional neural network (CNN) based on the
ResNet, consisting of a convolutional layer, 4 residual blocks with 2 convolutional layers per block,
followed by a dense layer (total of 6,400,433 model parameters). We used batch normalization [17],
ReLU and dropout [18] after each convolutional layer. Our architecture was based on a previously
published large-scale study to identify abnormalities in 12-lead ECGs [19] with some modifications
to accommodate tabular data input and binary output. Each ECG instance was loaded as a 12 x
4096 numeric matrix. Sex (binary) and age features (real valued) were passed to a 10-hidden-unit
layer, then concatenated with the dense layer, and finally passed to a sigmoid function to produce
the output (Task 1: Probability of diagnosis; or Task 2: Probability of 30-days mortality). Binary
cross-entropy was used as the loss function with the initial learning rate of 10−3, Adam optimizer
[20], ReLU activation function, kernel size of 16, batch size of 512, and dropout rate of 0.2 with other
hyperparameters set to default. The learning rate was reduced to 10−6 if there was no improvement
in tuning loss for nine consecutive epochs, and the learning process was stopped if the loss did not
reduce for nine epochs. For individual survival prediction tasks (Task 3), we designed an end-to-end
ISD algorithm, which is consistent with the ResNet structure (the sigmoid was replaced with ReLu
function) followed by 3 fully connected layers and a Multi Task Logistic Regression [21] (MTLR,
see appendix for overview) module.

In order to implement transfer learning, (a) in the classification algorithm, we froze all previous
layers’ weights and added one fully connected layer and; (b) in the ISD algorithm, we froze all layers
except the MTLR layers, during the training process. The models were implemented using PyTorch
1.11 in Python 3.8. We trained all our models with 8 Tesla V100-SXM2 GPUs and 32 GB of RAM
per GPU.

Our goal is to ultimately generate a prediction system that could be employed at the point of care –
i.e when the patient’s first ECG is acquired during an ED visit or hospitalization. We therefore used
the first ECG of each episode in the holdout set to evaluate our diagnosis model, and first ECG of a
random COVID-19 episode for each patient in the holdout set to evaluate our mortality models. The
validation performance of these models were compared using AUROC or the Concordance-index
(C-index) and bootstrapped 95% confidence intervals with 1000 replicates (CI). Additionally, we
report Area Under the Precision-recall Curve (AUPRC), and Average Precision (AP), F1, specificity,
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recall, precision, accuracy, and Brier score for binary classification as well as L1 marginal loss, and
L1 hinge loss for ISD prediction.

Figure 2:
Comparison of AUROC / C-Index for COVID-19 prediction models with and without pre-pandemic

transfer learning. Note error bars are 95%CI.1

3 Results

Supplementary Table C.1 and Figure 2 show the evaluation performance of three models, with and
without pre-pandemic transfer learning. After applying the exclusion criteria, out of the total of
199,858 ECGs acquired from 55,329 patients in the pandemic period, 3,452 (6.24%) were tested
positive for COVID-19. The diagnosis classification model trained solely with a development dataset
from this period showed AUROC of 60.7%. When the same algorithm was pre-trained with ICD-
wide diagnosis from the pre-pandemic time frame, the COVID-19 diagnosis performance improved
significantly by 11.1% to 71.8%.

Further, 407 (11.79%) patients out of the total 3,452 patients who were diagnosed with COVID-19
died within 30 days (See Kaplan Meier curve, Figure A.4). Similar to the diagnosis task, performance
of our 30-days mortality prediction improved significantly by 10.6% from AUROC of 60.1% to
70.7% when the model was pre-trained with pre-pandemic all-cause 30-day mortality.

Predicted survival curves using our ISD model for representative patients with COVID-19 are shown
in Figure 3. We observed the similar trend with ISD prediction as well, with the significant C-index
improvement of 15.3% (from 59% to 74.3%) using transfer learning.

4 Discussion and Conclusion

The generalization capability of the convolutional DL models strongly depend on the training data
size and the architecture complexity [22]. As seen in this study, training a DL model using smaller
training data with randomized weights initialization, can have high variance and low performance
on a test set. Transfer learning is often used to learn a model for a “target” domain when we have a
limited number of training instances for that domain, but have many training instances for a related
“source domain”. Here, we first pre-train a model on the source dataset, then fine-tune that learned

1AUROC: area under the receiver operating characteristic curve; C-Index: concordance index; CI: Confidence
Interval
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Figure 3: Individual survival curve predictions for 5 sample COVID-19 patients

model on the target dataset. This idea of transfer learning which was initially developed in DL-based
computer vision applications [23], is now widely applied in various medical domains [24, 25]. Earlier
this year, Leur et al [13] showed that transfer learning of a deep neural network to raw ECGs from a
very heterogeneous source performed similarly to the time-consuming human interpretation of the
ECG for mortality prediction in COVID-19 patients. This motivated us to use the transfer learning
method of first pre-training our DL models on a temporally disjoint dataset of ECGs acquired before
the pandemic out-break, and then subsequently continued to train them on our target task and target
dataset after the pandemic outbreak. This often produces a better representation of ECG features in
lower layers of DL, which then would yield better initialization of model parameters for training on
the target task [26]. For the target task of COVID-19 diagnosis, we chose 1414 different ICD-10
diagnosis codes as labels for our source task to capture global changes in ECG signals that are
associated with various medical conditions in general. Also, we expect that our pre-train models have
built a relevant internal representation of the patients, which can then be fruitful even if the outcome
changes.

Recall or sensitivity is one of the important metrics for COVID-19 diagnosis, since a lot of false
negatives would result in many undiagnosed patients who can potentially spread the virus. COVID-19
diagnosis task with transfer learning showed 11.1% improvement in AUROC, suggesting that transfer
learning can result in a model that produces prediction probabilities which are more concordant
with the observed COVID-19 status. Interestingly, the resultant model had 22% improvement in
specificity, but 9.8% decrease in recall. In this context, it is noteworthy that we have not considered
the differential costs of misclassification associated with false positives and false negatives in these
early stages of model development. Other important factors are the prevalence of the condition in the
target population as well as costs associated with running ECG tests and prediction algorithms at the
point of care. These considerations should be taken into account to estimate the optimal cut-point for
binarizing the prediction probabilities for COVID-19 diagnosis during the deployment phase [27].

There is limited reliable medical data available during pandemic outbreaks, especially in the early
phases. This poses significant challenges for DL applications targeted at identifying individuals at
risk or aiding clinical policy decisions at population level. Historical electronic health records can
be leveraged to estimate our best guess in such situations. This study demonstrates an application
of pre-pandemic transfer learning by showing substantial improvement over 3 different COVID-19
related diagnostic and prognostic prediction tasks. We expect that similar modeling strategies can be
useful in developing timely learning tools during pandemic outbreaks in the future. However, despite
our models being validated on large ECG datasets, the wide scale generalizability of such transfer
learning approaches in pandemic situations warrants further investigation.
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Appendix

A Figure

Figure A.4: Kaplan Meier Curve for patients with COVID-19 in the study cohort

B Overview of MTLR

Consider modeling the probability of survival of patients at each of a vector of time points τ =
[t1, t2, . . . , tm]. In our study τ is the union of

√
Nuncensored and month-wise in 1 years. We can set

up a series of logistic regression models: For each patient, represented as ~x,

P (T ≥ ti | ~x) =
(

1 + exp(~θi · ~x)
)−1

(1)

where ~θi are the time-specific feature vectors. While the input features ~x stay the same for all these
classification tasks, the binary labels yi = [T ≥ ti] can change depending on the threshold ti.% We
encode the survival time d of a patient as a binary sequence y = y(d) = (y1, y2, . . . , ym), where
yi = yi(d) ∈ {0, 1} denotes the survival status of the patient at time ti, so that yi = 0 (no death or
readmission event yet) for all i with ti < d, and (yi = 1) (death) for all i with ti ≥ d.

Here there are m + 1 possible legal sequences of the form (0, 0, . . . , 1, 1, . . . , 1), including
the sequence of all 0’s and the sequence of all 1’s. The probability of observing the survival status
sequence y = (y1, y2, . . . , ym) can be represented as:

PΘ(Y=(y1, y2, . . . , ym) | ~x) =
exp(

∑m
i=1 yi × θi · ~x)∑m

k=0 exp(fΘ(~x, k))
, (2)

where Θ = (θ1, . . . , θm), and fΘ(~x, k) =
∑m

i=k+1(θi · ~x) for 0 ≤ k ≤ m is the score of the
sequence with the event occurring in the interval [tk, tk+1) before taking the logistic transform, with
the boundary case fΘ(~x, k) = 0 being the score for the sequence of all ‘0’s. Given a dataset of n
patients { ~xr} with associated time of events {dr}, we find the optimal parameters (for the MTLR
model) (Θ∗) as

Θ∗ = arg max
Θ

n∑
r=1

[
m∑
i=1

yj(dr)(θi· ~xr)− log

m∑
k=0

exp fΘ( ~xr, k)

]
− C

2

m∑
j=1

‖θj‖2 (3)

where the C (for the regularizer) is found by an internal cross-validation process. There are many
details here – to insure that the survival function starts at 1.0, and decreases monotonically and
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smoothly until reaching 0.0 for the final time point; to deal appropriately with censored patients;
to decide how many time points to consider (m); and to minimize the risk of overfitting (by
regularizing), and by selecting the relevant features.

The paper by Yu et al. provides the details. C.-N. Yu, R. Greiner, H.-C. Lin, and V. Bara-
cos. Learning patient-specific cancer survival distributions as a sequence of dependent regressors. In
NIPS, 2011[21].

C Performance table

Task→ COVID-19 Diagnosis 30 days (binary mortality) Task→ ISD mortality
Transfer
learning
→

No Yes No Yes
Transfer
learning
→

No Yes

AUROC 60.70% 71.80% 60.10% 70.70% C index 59.00% 74.30%
AUPRC 6.49% 13.00% 15.74% 24.83% L1 marginal loss 2047.9808 2057.6506
AP 6.54% 13.10% 16.03% 25.11% L1 hinge loss 79.2981 74.9171
F1 10.70% 16.40% 24.84% 30.28%
specificity 57.70% 79.70% 77.25% 76.41%
recall 58.50% 48.70% 40.69% 52.41%
precision 5.90% 9.83% 17.88% 21.29%
accuracy 57.70% 78.40% 73.27% 73.80%
Brier score 4.16% 4.15% 9.72% 9.53%
P+ (test) 1380 1380 145 145
P- (test) 30377 30377 1191 1191
P+ (all) 9090 9090 1064 1064
P- (all) 190768 190768 7836 7836

Table C.1:

Performance of COVID-19 prediction models with and without pre-pandemic transfer learning. p(+)
refers to the number of positive instances for test (p+ (test)) and full (train + test) dataset (p+ (all)).2

2AUROC: area under the receiver operating characteristic curve; AUPRC: Area Under the Precision-recall
Curve; AP: Average Precision; P+/- (test): positive/negative instances in test set; P+/- (all): positive/negative
instances in all sets; ISD: individual survival distribution; C index: concordance index
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