
Syntax and Sensibility:
Using language models to detect and correct

syntax errors
Eddie Antonio Santos, Joshua Charles Campbell, Dhvani Patel, Abram Hindle, and José Nelson Amaral

Department of Computing Science
University of Alberta

Edmonton, Alberta, Canada
{easantos,joshua2,dhvani,hindle1,jamaral}@ualberta.ca

Abstract—Syntax errors are made by novice and experienced
programmers alike; however, novice programmers lack the years
of experience that help them quickly resolve these frustrating
errors. Standard LR parsers are of little help, typically resolving
syntax errors and their precise location poorly. We propose
a methodology that locates where syntax errors occur, and
suggests possible changes to the token stream that can fix the
error identified. This methodology finds syntax errors by using
language models trained on correct source code to find tokens
that seem out of place. Fixes are synthesized by consulting the
language models to determine what tokens are more likely at the
estimated error location. We compare n-gram and LSTM (long
short-term memory) language models for this task, each trained
on a large corpus of Java code collected from GitHub. Unlike
prior work, our methodology does not rely that the problem
source code comes from the same domain as the training data.
We evaluated against a repository of real student mistakes. Our
tools are able to find a syntactically-valid fix within its top-
2 suggestions, often producing the exact fix that the student
used to resolve the error. The results show that this tool and
methodology can locate and suggest corrections for syntax errors.
Our methodology is of practical use to all programmers, but will
be especially useful to novices frustrated with incomprehensible
syntax errors.

I. INTRODUCTION

Computer program source code is often expressed in plain
text files. Plain text is a simple, flexible medium that has been
preferred by programmers and their tools for decades. Yet,
plain text can be a major hurdle for novices learning how to
code [1, 2, 3]. Not only do novices have to learn the semantics
of a programming language, but they also have to learn how
to place arcane symbols in the right order for the computer to
understand their intent. The positioning of symbols in just the
right way is called syntax, and sometimes humans—especially
novices—get it wrong [1].

The tools meant for interpreting the human-written source
code, parsers, are often made such that they excel in understand-
ing well-structured input; however, if they are given an input
with so much as one mistake, they can fail catastrophically.
What’s worse, the parser may come up with a misleading
conclusion as to where the actual error is. Consider the Java
source code in Listing 1. A single token—an open brace ({)
at the end of line 3—in the input is different from that of the
correct file that the programmer intended to write. Give this

Listing 1: Syntactically invalid Java code. An open brace ({) is missing
at the end of line 3.

1 public class A {
2 public static void main(String args[]) {
3 if (args.length < 2)
4 System.out.println("Not enough args!");
5 System.exit(1);
6 }
7 System.out.println("Hello, world!");
8 }
9 }

input to a Java 8 compiler such as OpenJDK’s javac [4],
and it reports that there is an error with the source file, but it
overwhelms the user with misleading error messages to identify
the location of the mistake made by the programmer.
A.java:7: error: <identifier> expected

System.out.println("Hello, world!");
^

A.java:7: error: illegal start of type
System.out.println("Hello, world!");

^
A.java:9: error: class, interface, or enum expected
}
^
3 errors

Imagine a novice programmer writing this simple program
for the first time, being greeted with three error messages,
all of which include strange jargon such as error: illegal

start of type. The compiler identified the problem as being
at least on line 7 when the mistake is four lines up, on line 3.
However, an experienced programmer could look at the source
code, ponder, and exclaim: “Ah! There is a missing open brace
({) at the end of line 3!” Such mistakes involving unbalanced
braces are the most frequent errors among new programmers [5],
yet the compiler offers little help in resolving them.

In this paper, we present Sensibility, which finds and fixes
single token syntax errors. We address the following problem:

Given a source code file with a syntax error, how can one
accurately pinpoint its location and produce a single token

suggestion that will fix it?

We compare the use of n-gram models and long short-term
memory neural network (LSTM) models for modelling source
code for the purposes of correcting syntax errors. All models

were trained on a large corpus of hand-written Java source
code collected from GitHub. Whereas prior works offer
solutions that are limited to fixing syntax errors within the
same domain as the training data—such as only fixing errors
within the same source repository [6], or within the same
introductory programming assignment [7, 8]—Sensibility
imposes no such restriction. As such, we evaluated against
a corpus of real syntax errors collected from the Blackbox
repository of novice programmers’ activity [9].

In this paper, we focus on correcting syntax errors at the
token level. We do not consider semantic errors that can
occur given a valid parse tree such as type mismatches, and—
in our abstract models (Section III-B)—misspelled variable
names. These errors are already handled by other tools given
a source file with valid syntax. For example, the Clang C++
compiler [10] can detect misspelled variable names and—since
it has a valid parse tree—Clang can suggest which variable
in scope may be intended. As such, we focus our attention in
this paper to errors that occur before a compiler can reach this
stage—namely, errors that prevent a valid parse of a source
code file. In particular, we consider syntax errors that are non-
trivial to detect using simple handwritten rules, as used in some
parsers [11, 12].
Our contributions include:
• Showing that language models can successfully locate and

fix syntax errors in human-written code without parsing.
• Comparing three different language models including two
n-gram models and one deep neural network.

• Evaluating how all three models perform on a corpus of real-
world syntax errors with known fixes provided by students.

II. PRIOR WORK

Prior work relevant to this research addresses repositories
of source code and repositories of mistakes, past attempts at
locating and fixing syntax errors in and out of the parser,
methods for preventing syntax errors, deep learning, and
applying deep learning to syntax error locating and fixing.

a) Data-sources and repositories: are needed to train
models and evaluate the effectiveness of techniques on syntax
errors. Brown et al. [9, 13] created the Blackbox reposi-
tory of programmers’ activity collected from the BlueJ Java
Integrated Development Environment (IDE) [14], which is
used internationally in introductory computer science classes.
Upon installation, BlueJ asks the user whether they consent
to anonymized data collection of editor events. The dataset—
which is continually updated—enables a wealth of analyses
concerning how novices program Java. Our empirical evalua-
tion, described in Section VI, is one such analysis using the
Blackbox data.

b) Syntax errors: are errors whereby the developer wrote
code that cannot be recognized by the language rules of the
parser. It can be as simple as missing a semi-colon at the
end of a statement. The long history of work on syntax error
messages is often motivated by the need to better serve novice
programmers [1, 2, 3, 15, 16, 17, 18, 19, 20]. Denny et al. [21]
categorized common syntax errors that novices make by the

error messages the compiler generates and how long it takes for
the programmer to fix them. This research shows that novices
and advanced programmers alike struggle with syntax errors
and their accompanying error messages. Dy and Rodrigo [22]
developed a system that detects compiler error messages that do
not indicate the actual fault, which they name “non-literal error
messages”, and assists students in solving them. Nienaltowski et
al. [23] found that more detailed compiler error messages do
not necessarily help students avoid being confused by error
messages. They also found that students presented with error
messages only including the file, line, and a short message did
better at identifying the actual error in the code more often
for some types of errors. Marceau et al. [24] developed a
rubric for grading the error messages produced by compilers.
Becker’s dissertation [25] attempted to enhance compiler error
messages in order to improve student performance. Barik et
al. [26] studied how developers visualize compilation errors.
They motivate their research with an example of a compiler
misreporting the location of a fault. Pritchard [27] shows that
the most common type of errors novices make in Python are
syntax errors. Brown et al. [5] investigated the opinions of
educators regarding what they believe are the most common
Java programming mistakes made by novices, and contrasted
it with mistakes mined from the Blackbox dataset. They found
that educators share a weak consensus of what errors are
most frequent, and furthermore show that across 14,235,239
compilation events, educators’ opinion demonstrates a low level
of agreement against the actual data mined. The most common
error witnessed was unbalanced parenthesis and brackets, which
was ranked the eleventh most common on average by educators.
The other most common errors were semantic and type errors.

Earlier research attempted to tackle errors at the parsing
stage. In 1972, Aho [28] introduced an algorithm to attempt to
repair parse failures by minimizing the number of errors that
were generated. In 1976, Thompson [29] provided a theoretical
basis for error-correcting probabilistic compiler parsers. He
also criticized the lack of probabilistic error correction in then-
modern compilers. However, this trend continues to this day.

Parr et al. [30] discusses the strategy used in ANTLR, a
popular LL(*) parser-generator. The parser attempts to repair
the code when it encounters an error using the context around
the error so it can continue parsing. This strategy allows
ANTLR parsers to detect multiple problems instead of stopping
on the first error. Jeffery [11] created Merr, an extension of the
Bison parser generator, which allows the grammar writer to
provide examples of expected syntax errors that may occur in
practice, accompanied with a custom error message. In contrast
to Merr, our work does not require any hand-written rules in
order to provide a suggestion for a syntax error, and is not
reliant on the parser state, which may be oblivious to the actual
location of the syntax error.

Recent research has applied language models to syntax
error detection and correction. Campbell et al. [6] created
UnnaturalCode which leverages n-gram language models to
locate syntax errors in Java source code. UnnaturalCode wraps
the invocation of the Java compiler. Every time a program

is syntactically-valid, it augments the existing n-gram model.
When a syntax error is detected, UnnaturalCode calculates the
entropy of each token. The token sequence with the highest
entropy with respect to the language model would be the
likely location of the true syntax error, in contrast to the
location where the parser may report the syntax error. Using
code-mutation evaluation, the authors were able to find that a
combination of UnnaturalCode’s reported error location and
the Java compiler’s reported error locations would yield the
best mean-reciprocal rank for the true error location. Using
a conceptually similar technique to UnnaturalCode, our work
detects the location of syntax errors; unlike UnnaturalCode,
our work can also suggest the token that will fix the syntax
error.

c) Preventing syntax errors: is the goal of research
that wishes to reduce syntax errors or make syntax errors
impossible to make, even in text-based languages. This is often
accomplished by blurring the line between the program editor
and the language itself and engaging in tree edits, such as
the tree edit states of Omar et al. [31]’s proposed Hazel, or
Project Lambdu [32] where an AST is modified within the
editor instead of text.

Numerous compilers have placed a focus on more user-
friendly error messages that explain the error and provide
solutions. Among these are Clang [10], Rust [33], Scala [34],
and Elm [35].

d) Deep learning: is a technique to model token distribu-
tions on software text [36, 37]. Recurrent neural networks
(RNNs), unlike feedforward neural networks, have links
between layers that form a directed cycle, effectively creating
a temporal memory. RNNs have been successful in speech
recognition [38]. Long short-term memory (LSTM) neural
networks, extend RNNs by protecting its internal memory
cells from being affected by the “squashing” effect of the
logistic activation functions across recurrent links. Typically
neural networks’ weights and parameters are trained by some
form of stochastic gradient descent, a gradient descent that
shuffles inputs each round. RNNs and LSTMs have shown
value in processing natural language texts and programming
language texts. Hellendoorn and Devanbu [39] discuss the
effectiveness of deep learning (specifically RNNs and LSTMs)
on the task of suggesting the next token in a file. The authors
compare deep learning against a n-gram/cache language model
that dynamically changes based on what file and packages
are in scope in an editing session within a IDE. They find
that combining deep learning and the aforementioned cache
language model achieves very low entropy. The disadvantage is
that deep learning often requires keeping a closed vocabulary,
making deep learning unsuitable for predicting novel identifiers
and literals in ever-changing scopes. The LSTM model we
present in this paper maintains a closed vocabulary; for the
purpose of detecting syntax errors, the exact value of identifiers
and literals is irrelevant. Others have applied recurrent neural
networks (RNNs) to source code. White et al. [37] trained
RNNs on source code and showed their practicality in code
completion. Similarly, Raychev et al. [36] used RNNs in code

completion to synthesize method call chains in Java code. Dam
et al. [40] provides an overview of LSTMs instead of ordinary
RNNs as language models for code. Our work is similar to
code completion, in that given a file with one token missing,
Sensibility may suggest how to complete it; however, our focus
is on syntax errors, rather than helping complete code as it is
being written.

e) Deep learning and syntax error fixing: has already
been attempted by a few researchers with different degrees of
success and treatment. Bhatia and Singh [8] present SynFix,
which uses RNN and LSTM networks (collectively, RNNs) to
automatically correct syntax errors in student assignments. The
RNNs are trained on syntactically-correct student submissions,
one model per programming assignment. RNNs takes a 9-
token window from the input file and is trained to return
a 9-token window shifted one token to the right. In other
words, it outputs the next overlapping sliding window. Given
an invalid file, SynFix naïvely generates a sequence of fixes at
the error location as returned by the parser. The LSTM approach
described in this paper is quite similar to SynFix, however it
varies in a few important ways: we use two LSTM models,
whereas SynFix uses only one; SynFix is trained on a corpus
comprised entirely of syntactically-valid submissions of one
particular assignment, whereas our model is trained on a large
corpus of syntactically-valid source code collected from GitHub.
SynFix uses a thresholding method to rename identifiers,
whereas we abstract identifiers (n-grams and LSTMs) and
maintain all unique identifiers in the corpus (n-grams). Finally,
our method of generating fixes does not rely on the parser’s
conception of where the syntax error is, as the parser can
be quite unreliable in this regard [6]. SynFix was able to
completely fix 31.69% of student submissions, and partially
fix 6.39% more files.

Gupta et al. [7] describe DeepFix, which models C source
code with “common programming errors” (including syntax
errors) as a noisy channel. The authors employed with a
sequence-to-sequence Gated Recurrent Units (GRU)—a type
of recurrent neural network—to decode erroneous C code
to compilable C code. They trained their multilayer GRU
models on 100–400 token long student-submitted C source
code for which they have mutated to introduce synthesised
errors. DeepFix is able to completely fix 27% of all erroneous
student submissions, and partially fixed an additional 19% of
student submissions.

III. METHODOLOGY

In order to suggest a fix for a syntax error, first we must
find the error. For both finding errors and fixing syntax errors,
it is useful to have a function that determines the likelihood
of the adjacent token in the token stream given some context
from the incorrect source code file (Equation 1).

P (adjacent-token|context) (1)

We estimated smoothed n-gram models to approximate the
function in Equation 1 (Section IV). We also trained long short-
term memory (LSTM) recurrent neural networks in a similar

GitHub
Java repositories

Corpus
Syntactically-valid sources

LSTM
Language model

<s>
I0.8

Mmmm

0.2
like

0.6

don't
0.4

0.9

turtles
0.1

1.0
1.0

</s>1.0

n-gram
Language model

Parse and tokenize

Estimate

Train

Figure 1: Methodology for training language models of code.

manner (Section V). In order to train the models, we needed a
vast corpus of positive examples. For this, we mined over nine
thousand of the most popular open source Java repositories
from GitHub (Section III-A). This source code was tokenized
(Section III-B) such that it could be used to train the Java
language models. Finally, we used the approximated functions
expressed in Equation 1 to detect a syntax error in a file and
suggest a plausible fix. Figure 1 summarizes this process.

A. Mining GitHub for syntactically-valid training examples

To obtain the training data, we downloaded Java source
code from GitHub. Since we required Java tokens from each
file, other GitHub mining resources such as Boa [41] and
GHTorrent [42] were insufficient. Thus, at the end of June
2017, we downloaded the top 10,000 Java repositories by stars
(as an analog of popularity). Since GitHub’s search application
programming interface (API) outputs a total of 1000 search
results per query, we had to perform 10 separate queries, each
time using the previous least popular repository as the upper
bound of stars per repository for the next query. In total, we
successfully downloaded 9993 Java repositories.

For each repository, we downloaded an archive containing the
latest snapshot of the Git repository’s default branch (usually
named master). We extracted every file whose filename ended
with .java, storing a SHA-256 hash to avoid storing byte-for-
byte duplicate files. We used javac’s scanner (tokenizer) and
parser as implemented in OpenJDK 8 [4] to tokenize and parse
every Java file downloaded. Parsing each source file allowed
us to filter only Java source files that were syntactically-valid
according to the Java Platform Standard Edition 8 [43], more
commonly known as Java 8. In total, we tokenized 2,322,481
syntactically-valid Java files out of 2,346,323 total .java files
downloaded. All data—repository metadata, source code, and
repository licenses—were stored in an SQLite3 database.1

B. Tokenization

A token is the smallest meaningful unit of source code, and
usually consists of one or more characters. For example, a
semicolon is a token that indicates the end of a statement.

The set of all possible unique tokens tracked by a language
model is called the vocabulary. Each new source file will likely
contain novel variable names or string literals that have never
been seen before. This complicates the creation of language

1Available: https://archive.org/details/sensibility-saner2018

models [39], since every novel file presented to the model will
likely contain out-of-vocabulary tokens. For the purposes of
learning the syntax of the language, we deem these problematic
tokens to be irrelevant to the task. Thus, to keep a generally
small, bounded vocabulary that has enough unique tokens to
faithfully represent the syntax and regularity of handwritten
Java, we abstracted certain tokens.

Table I: Token kinds according to the Java SE 8 Specification [44],
and whether we abstracted them or used them verbatim.

Token kind Action Examples

Keyword Verbatim if, else, for, class, strictfp,
int, char, const, goto, . . .

Keyword literal Verbatim true, false, null
Separators Verbatim (,),{, },[],;, ,, ., ..., @, ::
Operators Verbatim +, =, ::, >>>=, ->, . . .
Identifier Abstracted AbstractSingletonFactory,

$ecret, buñuelo
Numeric literal Abstracted 4_2L, 0xC0FFEE, 0755 0b101010,

.3e-02d, 0xFFp+12f, ’™’
String literal Abstracted "hello, world"

A key insight is that, in order to model the syntax of a
programming language, it is unnecessary to model precise
variable names and literal values. Thus, when creating a fixed
vocabulary, we abstracted certain tokens that vary between
files, and kept all other tokens verbatim (Table I). The result
was 110 unique tokens for the Java 8 standard. In addition to
these tokens, we added the synthetic <unk> token to encode
out-of-vocabulary tokens, and <s> and </s> tokens such that
we could encode beyond the start and end of a source file,
respectively [45]. Thus, the total size of our vocabulary was
113 unique tokens for the abstract models.

C. Tokenization pipeline

Table II: The series of transformations from source code to vectors
suitable for training the language models. The simplified vocabulary
indices are “=” = 0, “;” = 1, “String” = 2, and “Identifier” = 3.

Original source code greeting = "hello";
Tokenization Identifier("greeting"), Operator("="),

String("hello"), Separator(";")
Vocabulary abstraction Identifier = String ;
Vectorization [3 0 2 1]

To convert a source file to a form that is suitable for training
the models, we performed a series of transformations (Table II).
The raw source code was tokenized in a form that is suitable
as input for the Java parser. As mentioned in Section III-A,
this was done for each Java file using javac.

Then, we normalized the token stream such that each token
is an entry of the abstracted vocabulary. The exact text of
tokens belonging to open classes was discarded for training,
except in the case of the 10-gram Concrete model (Section IV).
Each token in the vocabulary is assigned a non-negative integer
index for the LSTM model or a text name for the 10-gram
Abstract model.

https://archive.org/details/sensibility-saner2018

IV. TRAINING n-GRAM MODELS FOR SYNTAX ERROR
CORRECTION

Inspired by the prior work by Campbell et al. [6], we
implemented two separate 10-gram models for syntax error
correction. The models work by first estimating a Modified
Kneser-Ney smoothed 10-gram model on the valid code in the
training corpus. Since the 10-gram model expects a corpus
of space-separated words, each token in the training source
code file was converted into a single “word”. Unlike LSTMs,
the n-gram model can easily handle arbitrary extensions to its
vocabulary, so we created both an abstract model—like the
LSTM models—and a concrete model, where token text was
ingested verbatim for all tokens.

A. Detecting syntax errors with n-gram models

When presented with a syntactically invalid file which needs
correction, the tool breaks the source code into 21-token-long
windows, which are compared against the model for their
cross-entropy. Equivalently, this is the negative logarithm of
the probability of encountering that specific 21-token window
according to the Kneser-Ney smoothed 10-gram model. The
model in this case is either the abstract model, containing token
types, or the concrete model, containing the actual text of each
token.

Then, the cross-entropy is converted to a specific value for
each token. Each token is assigned a score equal to the average
entropy of every window which it was a member of. Since the
window length is 21, each token is a member of 21 windows,
and so its score is the mean entropy of those 21 windows.

The window length, 21 was chosen to match the LSTM
window length in the next section and so that there is at least
one 10-gram before each token and one 10-gram after each
token being examined. This takes advantage of the fact that a
single token can affect the entropy of a window ending with
that token, the entropy of a window beginning with that token,
and windows at every position in between.

The tool considers the token with the highest score to be
the most likely location of a code mistake, since it contributed
the most entropy to the 21 windows it was in.

B. Fixing syntax errors with n-gram models

The top-10 scoring tokens are then considered in turn for
correction. This is limited to 10 to limit runtime. For each of
the top-10 scoring tokens, the model attempts to delete, insert
a token before, or substitute that token.

For deletion, there is only one option for each of the top-
10 scoring tokens: try deleting that token. For insertion and
substitution, the model has many options. It can insert any
token it has seen before at that location, or it can substitute
the token at that location with any token it has seen before.
The tool tries any token it has seen in the training corpus with
frequency ≥ 1000. This lower limit on token frequency is also
imposed to limit the runtime of the tool.

The above process produces many possible fixes. For each
possible fix, the tool uses the model to compute the entropy of
the 21-token window with the deleted, inserted, or substituted

token at the center. This entropy is subtracted from the original
entropy, before the suggestion was applied. The resulting
value is how much the cross-entropy of the erroneous file
was decreased (or increased) by applying a possible fix.

If the entropy has decreased, this means the probability
of this code being observed before has increased, which
means, according to the model, the file (with the possible
fix applied) is more likely to be syntactically correct. The fixes
are ranked based on how much the entropy decreased after the
fix suggestion was applied. The suggestion which causes the
greatest decrease in entropy when applied is reported first.

The search process described above takes less than two
seconds on a modern CPU (Intel® Core™ i7-3700K) to
produce a list of fixes and check them for syntactic-validity.

V. TRAINING LSTMS FOR SYNTAX ERROR CORRECTION

To train the LSTMs, each source file was converted into a
vector, representing the tokens of an entire file. The vector is
constructed by substituting each token with its corresponding
numeric index in the abstracted vocabulary (Section III-B).
Finally, each vector was converted into a one-hot encoded
matrix (also known as one-of-k encoding). In a one-hot
encoding, exactly one item in each column is given the value
one; the rest of the values in the column are zero. The one-hot
bit in this encoding represents the index in the vocabulary.
Thus, the matrix has as many columns as tokens in the file
and has as many rows as entries in the abstracted vocabulary.
Each column corresponds to a token at that position in the file,
and has a single one bit assigned to the row corresponding to
its (zero-indexed) entry in the vocabulary.

The modelling goal is to approximate a function that, given
a context from source code, determines the likelihood of the
adjacent token. If this function judges the token as unlikely, it
indicates a syntax error. This function solves the first problem:
finding the location of a syntax error, as demonstrated by
Campbell et al. [6]. However, to fix errors, it is also necessary
to know what tokens actually are likely for each given context.
We rephrase Equation 1 such that, instead of predicting the
likelihood solely of the adjacent token, it returns the likelihood
of every entry in the vocabulary. In other words, we want a
function that returns a categorical distribution (Equation 2).

adjacent [context] =

P (if|context)
P (else|context)
P (Identifer|context)
P (String|context)
. . .

P (}|context)

(2)

The categorical distribution can also be seen as a vector
where each index corresponds to the likelihood of an entry in
the vocabulary being the adjacent token. Being a probability
distribution, the sum of the elements in this vector add up to
1.0. The probability distribution works double duty—because it
outputs probabilities, it can determine what the most probable

Listing 2: Syntactically-valid Java
1 if (activity == null) {
2 this.active = false;
3 }

forwards

backwards

n-gram

suffix (context)adjacent

{ Identifier. =this ;false

null)==Identifier(if {

adjacentprefix (context)

Figure 2: The relationship between an n-gram, the contexts, and the
adjacent token. In this diagram, n = 7, and the adjacent token is {
in both cases. Thus, the contexts are n− 1 or 6 tokens long.

adjacent token should be; hence, it can be used to determine
possible fixes (discussed in Section V-B).

To approximate such a function, we used deep learning to
map contexts to categorical distributions of the adjacent token.
For this task, we employed long short-term memory (LSTM)
recurrent neural networks, as they were successfully used by
prior work in predicting tokens from source two models—
the forwards model, given a prefix context and code [36, 37].
Unlike prior work, we have trained returning the distribution
of the next token; and the backwards model, given a suffix
context and returning the distribution of the previous token.
Using recurrent neural networks in two different directions was
used successfully in speech recognition [38], but has yet to be
applied to source code.

Our insight is that models with opposite viewpoints (that
is, different contexts for the same adjacent token) may return
different categorical distributions. That is, whilst the forwards
model may declare that the keyword this is likely for the
next token, the backwards model may declare that an open
brace ({) is far more likely than the keyword this. With this
formulation, we are able to both detect the location of syntax
errors and produce possible fixes.

As an example, consider the syntactically-valid Java snippet
in Listing 2. Figure 2 illustrates the contexts—both prefix and
suffix—when estimating the likelihood of the open brace ({)
on the first line of Listing 2.

As training input, we iterated over each token in each file,
moving a sliding window over the tokens of the source code
file. Based on empirical work done by White et al. [37] we
chose a context length τ of 20 tokens. This corresponds to an
n-gram length of 21 tokens, as an n-gram includes both the
context and the adjacent token. The prefix was provided as
the example input to the forwards model, and the suffix was
provided to the backwards model. Both contexts were provided
as a one-hot matrix. As example output to both models, we
provided the adjacent token as a one-hot vector. To handle
tokens whose contexts extend beyond the start and end of the
file, we inserted synthetic <s> and </s> tokens, collectively
called padding tokens [45]. This means that the first prefix
context in the file is comprised entirely of 20 <s> tokens;
likewise, the last suffix context in the file is comprised of 20

Table III: Summary of the neural network architecture we trained.
|V | = 113 is the size of the vocabulary (Section III-B) and τ = 20
is the length of each context in number of tokens.

Input One-hot matrix, dimensions = τ · |V |

Type Parameters Activation

LSTM 300 hidden units tanh; recur.: hard sigmoid
Dense softmax

Output Categorical distribution, size = |V |
Loss Categorical cross-entropy
Optimizer RMSprop, initial learning rate = 0.001

</s> tokens.
We used Keras 2.0.8 [46], a Python deep neural network

framework, to define our model architecture, using the Theano
0.8.2 [47] backend to train the models proper. A summary
of the precise architecture (hyperparameters) that we used is
given in Table III. The LSTM layer has 300 hidden units,
based on the observation by White et al. [37] that recurrent
neural networks with 300 outputs with 20 tokens of context
or 400 outputs with 5 tokens of context have the lowest
perplexity with respect to the corpus of source code. We used
the RMSprop [48] gradient descent optimizer with an initial
learning rate of 0.001, optimizing to minimize categorical cross-
entropy. We ran a variable number of epochs—full iterations
of the training examples—to train the models, using early
stopping to determine when to stop training. Early stopping
was configured to stop upon detecting three consecutive
epochs (its patience parameter) that yield no improvement
to the categorical cross-entropy with respect to the validation
examples. Later tuning (Section VIII-A) revealed that shuffling
samples within files, patience of 10, and the Adam optimizer
had far better results.

Once each model was trained, it was serialized in Hierar-
chical Data Format 5 (HDF5). In total, the weights and biases
of each individual model resulted in 6.1 MiBs of data.2 Each
model individually took between 2½ and 11½ days to train;
up to six models were trained simultaneously on two Nvidia®
GeForce® GTX 1070 GPUs. Section VII-A discusses how files
were chosen for the training, validation, and testing sets.

A. Detecting syntax errors with dual LSTM models

We used the output of the models trained in Sections IV
and V to find the likely location of the syntax error. Given
a file with one syntax error, we tokenized it using javac.
javac’s tokenizer is able to tolerate erroneous input in the
tokenization stage, which produces a token stream (as opposed
to the parsing stage, which produces an abstract syntax tree).

Recall that each model outputs the probability of the adjacent
token given a context from the token stream, but each model
differs in where the context is located relative to the adjacent
token. We used the two independent probability distributions
to determine which tokens are quantifiably unlikely, or “unnat-
ural” [6].

2Available: https://archive.org/details/sensibility-replication-package

https://archive.org/details/sensibility-replication-package

To calculate “naturalness”, we summed the cross-entropy of
each probability model with respect to the erroneous source
file. Once the naturalness of every single token in the file is
calculated, we return a sorted list of the least likely tokens,
or, in other words, the locations that are most likely to be a
syntax error.

For a discrete distribution p(x) and a distribution q̂(x) that
models p(x), the cross-entropy is computed as follows

H(p, q̂) = −
∑
x∈X

p(x) log2 q̂(x)

This returns a value in [0,∞), where 0 indicates that q̂ models
p perfectly; as the cross-entropy increases, this increases the
amount of information required to model p(x). Hence, a value
closer to 0 is more “natural”, whereas larger values indicates
a more “unnatural” event.

For each token position in the erroneous source file, we
calculate the cross-entropy with respect to the current token in
the file, for both the forwards and backwards models. That is,
we let p(x) equal 1 iff x is equal to the token at the current
position in the file.

p(x) =

{
1, x = actual token
0, otherwise

We then use q̂f (x|prefix) and q̂b(x|suffix) obtained from
consulting the forwards and backwards models with their
corresponding context, respectively. We then combine the two
cross-entropies by summing. Thus, the “unnaturalness” of a
token t from the source file is:

unnaturalness = H(p, q̂f) +H(p, q̂b)

To obtain a ranked list of possible syntax error locations,
we sort the list of tokens in the file in descending order of
unnaturalness. That is, the positions with the highest summed
cross-entropy are the most likely location of the syntax error.

B. Fixing syntax errors with dual LSTM models

Given the top-k most likely syntax error locations (as
calculated in Section V-A), we use a naïve “guess-and-check”
heuristic to produce and test a small set of possible fixes.
Using the categorical distributions produced by the models, we
obtain the top-j most likely adjacent tokens (according to each
model) which may be inserted or substituted at the estimated
location of the fault. Each fix is tested to see if, once applied,
it produces a syntactically-valid file. Finally, we output the
valid fixes.

For a given syntax error location, we consult each model
for the top-j most likely tokens at that position. The models
often produce similar suggestions, hence we take the union of
the two sets.

suggestions = topj (q̂f) ∪ topj (q̂b)

We then try the following edits, each time applying them
to the syntactically-invalid file, and parsing the result with
javac to check if the edit produces a syntactically-valid file.

If it does, we consider the edit to be a valid fix. We use the
following strategies to produce fixes:

1) Assume a token at this location was erroneously deleted.
For each t in the set of suggestions, insert t at this location.

2) Assume the token at this location was erroneously in-
serted. Delete this token.

3) Assume the token at this location was erroneously sub-
stituted for another token. Substitute it with t, for each t
in the set of suggestions.

We repeat this process for the top-k most likely syntax error
locations. We let k = 3 to limit runtime. j was calibrated
according to the perplexity of the estimated probability distri-
bution. Perplexity is, roughly speaking, the expected number
of choices that an estimated distribution q̂ requires to model
events from the true distribution p. It is directly related to
cross-entropy H(p, q̂) by 2H(p,q̂). To determine j, we used the
ceiling of the highest validation cross-entropy obtained while
training. The highest cross-entropy was 1.5608, or a perplexity
of just under 3; therefore, we let j = 3.

Finally, all valid fixes are output to the user. The LSTM
model takes less than three seconds on a modern CPU (Intel®
Core™ i5-3230M) to produce a list of suggested fixes for a
single file. Every single fix suggested this way is guaranteed
to produce a syntactically-valid file.

VI. MINING BLACKBOX FOR NOVICE MISTAKES

Both the n-gram and LSTM model presented in this paper
are trained on data from professional code available on GitHub.
In order to properly evaluate these models for their intended
purpose—detecting and correcting syntax errors in novices’
code—we would ideally have access to a repository of syntax
errors made by novices.

Blackbox [9] is a continually-updated repository of events
from the BlueJ Java IDE [14]—an IDE aimed primarily
at novices learning Java in introductory computer science
classes. Blackbox has been used to analyze novice programmers
before [5, 13, 49, 50]. The data contains over four years of
IDE events collected from users around the world who have
opted-in to anonymously share edit events. The IDE events
includes the start and end of an editing session, the invocation
of the compiler, whether a compilation succeeded or failed,
and edits to lines of code. Importantly, one can reconstruct the
source code text at the time of any compilation event.

We mined Blackbox in order to find realistic data to evaluate
our syntax-correction algorithms. By using the IDE event data
in Blackbox, we collected syntax mistakes “in the wild”, which
are accompanied by the true resolution to that mistake. The
intended audience of Sensibility is novices, thus it is important
to evaluate our syntax error correction methods against actual
code that a novice would write.

A. Retrieving invalid and fixed source code

For the purposes of the evaluation, we sought to retrieve
pairs of revisions to a source code file: the revision directly
prior to a compilation that failed due to a syntax error, and the
revision immediately following which compiled successfully.

Table IV: Edit distance of collected syntax errors

Edit Distance Instances Percentage (%)

0 10,562 0.62
1 984,471 57.39
2 248,388 14.48
3 93,931 5.48
4 54,932 3.20
5 or more 323,028 18.83

Total 1,715,312

Table V: Summary of single token syntax-errors

Edit Operation Instances Percentage (%)

Insertion 223,948 22.75
Substitution 77,846 7.91
Deletion 682,677 69.34

In order to collect such pairs of revisions, we iterated through
every editing session from the beginning of data collection
up to midnight, July 1, 2017, UTC. For each session, we
iterated through each pair of compilation events and filtered
the pairs wherein the former compilation had failed (the
“before” revision) and the compilation immediately following
had succeeded (the “after” revision). We retrieved the complete
Java source code at each revision of the pair and kept only
those pairs wherein the source code of the “before” revision
was syntactically-incorrect (verified using javac).

For the purposes of our analyses, we calculated the token-
wise edit distance between the before-and-after revisions of
source code. We used Levenshtein distance [51], wherein two
strings of tokens are compared for the minimum amount of
single token edits (insertions, deletions, or substitutions) that
are required to transform one string of tokens into the other.
Thus, edit distance indicates how many edits, at minimum, a
syntax error correcter must suggest to transform an invalid
source file to a syntactically-valid source file.

B. Findings

In total, we collected 1,715,312 before-and-after pairs
matching our criteria. Of these pairs, 984,471 (57.39%)
were single-token syntax errors (Table IV)3; This means
that, even if a tool accounts only for single-token mis-
takes, the tool accounts for the majority of syntax errors.

The majority of syntax errors we found differed from the
fixed source file by a single edit.

We further studied the single-token syntax errors. Table V
breaks down the errors into each edit operation. The majority
of single-token syntax errors are deletions—such as when
a programmer misses a token such as a semi-colon, or a
brace. Insertions account for almost one-quarter of errors, while
substitutions are the least common.

3Syntax errors caused by invalid escape sequences within string literals
were considered to have an edit distance of zero, as only the contents of the
string must change, but not the actual token type.

Table VI: Number of tokens between partitions

Mean S.D. Median Min Max

Train 8.16 M 596,019.30 8.06 M 7.45 M 9.00 M
Validation 3.80 M 365,337.76 3.68 M 3.47 M 4.34 M

In Section VII, we describe how we used the single-token
syntax errors we mined to evaluate LSTM and n-gram methods
for syntax error correction and detection.

VII. EVALUATION

To determine the practical usefulness of Sensibility, we ask
the following questions:

1) How well does Sensibility find syntax errors?
2) How often does Sensibility produce a valid fix?
3) If a fix is produced, how often is it the same fix used by

the student to fix their own code?
To answer these questions, we created three “qualifications”

for a suggested fix. The first qualification is that the fix
suggestion must be at the exact location of the mistake in
the code, down to the individual token.

To judge how well Sensibility produces syntactically-valid
fixes, we created a second qualification, valid fix, which is
stricter: the fix suggestion must be at the exact location of the
mistake in the code, and applying the fix suggestion must yield
a syntactically valid source file.

The third qualification is the most strict: the fix suggestion
must be exactly the same token (abstracted or concrete,
depending on the model) that the student used to fix their
own code. A fix suggestion that matches the student’s own fix
is called a true fix. A true fix precisely reverses the mistake
that introduced the error.

Then we found the highest ranking fix suggestion produced
by the tool using various models and training partitions that
met the above qualifications.

A. Partitioning the data

To empirically evaluate Sensibility, we repeated our experi-
ments five times on mutually-exclusive subsets of source code
files called partitions. Each of the five partitions are subdivided
further into two mutually-exclusive sets: the train set, and the
validation set, thus resulting in 10 sets total (described in
Table VI). The validation set was used exclusively for the
LSTM training procedure described in Section V, but not used
when estimating n-gram models.

We populated every set with Java source code from the
GitHub corpus collected in Section III-A. We split our training
and validation data into five partitions to demonstrate how the
performance of Sensibility changes when trained on completely
different data. Keeping each corresponding partition the same
size facilitates the comparison of results between partitions.
This also represents the expected use case of an end-user who
will never retrain Sensibility.

When assigning source code files to partitions, we imposed
the following constraint to ensure the independence of training
partitions: The source code files of a single repository cannot

be distributed over partitions; in other words, every source
code file in a given repository must be assigned to one and
only one partition. The constraint’s purpose is to make the
evaluation more realistic, considering the expected use case
of Sensibility. If a user is trying to figure out a syntax error
in their own hand-written source code, it is likely that their
model was trained on whole projects at once.

The test files did not come from the GitHub corpus.
Instead, they came from the Blackbox repository of novice
programmers’ activity [9]. The same set of test files were used
to evaluate each partition; Only the training and validation files
changed between partitions.

B. Finding the syntax error

To quantify Sensibility’s accuracy in finding the error, we
calculated the mean reciprocal rank (MRR) of the ranked syntax
error location suggestions. Reciprocal rank is the inverse of
the rank of the first correct location found in an ordered list
of syntax error locations for a file q. Mean reciprocal rank is
the average of the reciprocal rank for every file q in the set of
total solutions attempted Q:

MRR =
1

|Q|
∑
q∈Q

1

rankq

MRR is always a value in [0, 1], where an MRR of 1 is
the best possible score, obtained when the first suggestion is
always the correct location of the error. Conversely, an MRR of
0 means that the correct location number is never found in the
ranked list of suggestions. For example, if for one mistake, the
correct token was given first, for another student mistake, the
correct token was given third, and for yet another mistake the
correct token was never found, the token-based MRR would be
1
3

(
1
1 + 1

3 + 0
)
= 0.44. MRR is quite conservative: in the case

that the correct result is ranked first half of the time and ranked
second the rest of the time, the MRR is only 0.75. To quantify
Sensibility’s ability to find syntax errors, we determined how
often it finds the exact location of the erroneous token.

C. Fixing the syntax error

To evaluate the effectiveness of Sensibility to fix syntax
errors, we measured how often the models produces an edit
that, when applied, produces a syntactically-valid file. We
report this as a valid fix. A stricter measure of success is how
often Sensibility produces the true fix. The true fix is defined
as the exact same fix that the student applied to their own
code. For abstract tokens, the true fix requires that the tool
applied the correct operation (insertion, deletion, substitution)
at the correct location, and with the correct token type. For
concrete tokens, the token must also match exactly, not just its
type, to count as a true fix. Thus, for the 10-gram Concrete to
produce a true fix it must produce the exact identifier, number
literal, string, etc. that the student used to fix their code. So,
if the student’s fix was to insert the identifier a, the 10-gram
Concrete model must also insert the identifier a, while the
abstract models must only suggest inserting identifier at
that same location.

Table VII: MRRs of n-gram and LSTM model performance

Model Qualification 1 2 3 4 5 All

10-gram Abstract Location .41 .42 .41 .40 .40 .41
Valid Fix .39 .39 .39 .38 .38 .39
True Fix .36 .36 .36 .35 .35 .36

10-gram Concrete Location .07 .07 .07 .08 .07 .07
Valid Fix .06 .06 .06 .07 .06 .06
True Fix .04 .04 .04 .04 .04 .04

LSTM 1 Location .06 .05 .05 .05 .05 .05
(RMSProp) Valid Fix .06 .05 .05 .05 .05 .05
(no reshuffling) True Fix .05 .04 .04 .04 .04 .04

LSTM 2 Location .52 .53 .53 .50 .50 .52
(Adam) Valid Fix .52 .53 .52 .49 .50 .51
(reshuffling) True Fix .46 .46 .46 .44 .44 .46

Location Valid Fix True Fix 10−
gram

 A
bs.

10−
gram

 C
on.

LS
T

M
 A

bs.
LS

T
M

 Im
pr.

0 20k 40k 0 20k 40k 0 20k 40k

5+
4
3
2
1

5+
4
3
2
1

5+
4
3
2
1

5+
4
3
2
1

Count

R
an

k

Figure 3: The mean reciprocal ranks of determining the exact location,
a valid fix, and the true fix of student mistakes for all three models.

VIII. RESULTS

Performance of finding syntax errors is measured by mean
reciprocal rank. Table VII lists the MRR obtained when locating
the exact token of the syntax error, generating a valid fix, and
generating the true fix for each tool. As can be seen from the
table, results are very consistent across partitions.

The values in Table VII are all well above what would be
expected from guessing by chance alone. If a file had 100 lines
and 10 tokens per line, location MRR would be 0.002 just by
guessing. Since fix MRRs depend on determining the location
first, just by guessing, they would be even lower than 0.002.

Figure 3 is a series of histograms visualizing the ranks of
each qualification. The width of each bar displays the number
of observations that have a rank at that value. Figure 3 shows
that the MRR values in Table VII are dominated by either
rank 1 results, that is, the tools first result was qualifying, or
rank 5+ results, that is the qualifying result was far down the
suggestion list, or the tools were unable to produce a qualifying
result. In this case, qualifying means the result is the correct
location, the result was the first valid fix, or the result that was
the true fix.

Performance of fixing syntax errors In all cases, there is

a clustering of reciprocal ranks at 1.0, meaning that the 10-
gram Abstract model tool can suggest the true fix as its first
suggestion 30.22% of the time. The 10-gram Concrete model
tool can suggest the true fix as its first suggestion 3.52% of
the time. The LSTM 1 tool can suggest the true fix as its
first suggestion 3.84% of the time. LSTM 2 is described in
Section VIII-A.

A 10-gram Abstract model can produce a fix for
syntactically-invalid code by suggesting the correct token
type, operation, and location about one third of the time.

A. Improving the performance of the LSTMs

The lacklustre results of LSTM 1 were surprising; thus, we
engaged in a hyperparameter search. We tested 985 different
configurations, varying the hidden layer size (50, 100, 200,
300, 400, 1000), the context size (5, 10, 15, 20), and optimizer
(RMSprop, Adam), among other hyperparameters (refer to
Section V). After evaluating each configuration, we found that
an architecture identical to the one presented in Section V
performed exceptionally well, with three critical differences:
• We used the Adam optimizer [52] instead of RMSprop;
• We trained longer, increasing the patience to 10 epochs;
• We shuffled samples within each file prior to constructing

mini-batches.
The results of applying the same evaluation methodology

presented in Section VII is at the end of Table VII. The
improved LSTM configuration considerably outperformed all
models in all qualifications. With an MRR of .46 for true fix,
this improved LSTM model was capable of fixing nearly half
of all single-token syntax errors in the corpus.

IX. DISCUSSION
Using Sensibility to correct multiple mistakes at once is

theoretically possible but due to the fact that, at best, its first
fix suggestion is only the true fix approximately half of the time,
more advanced search strategies may be required that try fixes
in different combinations. Alternatively more generic forms
of search can be exploited, such as SMT solvers or heuristic
search to help produce more parsable and safe outputs. In this
work we only explore code as a one-dimensional token stream,
but hand-written code is often laid out in two dimensions on
the user’s screen. Spatial relationships or positioning could
prove useful in future error locators and fixers.

Our work is complementary to other syntax error detection
tools such as Merr [11] and Clang’s “fix it” hints [10]. This
work can be integrated with other tools to squash syntax errors.
Sensibility is only one step in the hunt for typos. It attempts
to handle any typos that would produce a definite syntax error.
However, it does not address misspelled variable names, or
type errors. Sensibility can help other tools that require a
valid abstract syntax tree—such as type checkers—that cannot
work on code with invalid syntax. Localness [53], online n-
gram models, or other search-based models might be feasible
candidates to help resolve identifiers. Further investigation is
required into applying ensembles of learners to combine the
strengths of deep learning, smoothed n-gram models, and other

probabilistic models to achieve high precision in detecting and
fixing syntax errors.

A. Threats to validity

a) Construct validity: is threatened by the abstraction
of identifiers. By suggesting that an identifier be inserted or
modified, the choice is still up to the programmer since the
code may parse, but may not necessarily be compilable.

b) Internal validity: is threatened by our reliance on
the Blackbox data set [9, 13]. There is potential bias from
the curators of the dataset, and a self selection bias as the
syntax errors are submitted with the consent of the students.
Internal validity could be harmed by using directly adjacent
compilations: the first for erroneous code and the second for the
fixed source code. This could miss situations where a syntax
error is made, doesn’t compile, and several fixes are attempted
by a human. In this case the erroneous source code we used
wouldn’t match the original erroneous source code a human
had written, that is, their first attempt.

c) External validity: is addressed by the use of a large
number of Java source files; however these source files
were only collected from GitHub, thus are not necessarily
representative of all Java code or code of other languages.

X. CONCLUSIONS

We have described a method of exploiting n-gram and LSTM
language models to locate syntax errors and to suggest fixes
for them. Typically a fix is found about half of the time. The
fix is often suggested based on abstract tokens, so often the
end-user needs to fill in the appropriate identifier.

Abstract vocabularies overcomes two limitations of software
engineering deep learning problems: vocabulary size and unseen
vocabulary, and cost of training for end-users. Both n-gram
and LSTM models require extensive training; we present a
method for training on large corpora before deployment such
that end-users of the model never have to locally train.

This work demonstrates that search aided by naturalness—
language models applied to source code—can produce results
with appropriate accuracy and runtime performance (two to
three seconds on a modern CPU).

In summary by training language models on error-free code,
we enable them to locate errors through measures of perplexity,
cross-entropy, or confidence. We can then exploit the same
language models bi-directionally to suggest the appropriate
fixes for the discovered syntax errors. This relatively simple
method can be used to aide novice learners avoid syntax-driven
pitfalls while learning how to program.

ACKNOWLEDGMENTS

We thank Neil C. C. Brown, Ian Utting, and the entire
Blackbox administration team for the creation of the Blackbox
repository. and the continual support and community that they
foster. We thank Julian Dolby, for offering a new perspective on
the problem. We would also like to thank Nvidia Corporation
for their GPU grant. This work was funded by a MITACS
Accelerate with BioWare and a NSERC Discovery Grant.

REFERENCES

[1] E. S. Tabanao, M. M. T. Rodrigo, and M. C. Jadud,
“Identifying at-risk novice Java programmers through the
analysis of online protocols,” in Philippine Computing
Science Congress, 2008.

[2] M. C. Jadud, “A first look at novice compilation behaviour
using BlueJ,” Computer Science Education, vol. 15, no. 1,
pp. 25–40, 2005.

[3] E. S. Tabanao, M. M. T. Rodrigo, and M. C. Jadud,
“Predicting at-risk novice Java programmers through
the analysis of online protocols,” in Proceedings of
the seventh international workshop on Computing
education research, ser. ICER ’11. New York, NY,
USA: ACM, 2011, pp. 85–92. [Online]. Available:
http://doi.acm.org/10.1145/2016911.2016930

[4] Oracle Corporation, “The Java programming language
compiler group,” http://openjdk.java.net/groups/compiler/,
2017, (Accessed on 08/04/2017).

[5] N. C. Brown and A. Altadmri, “Investigating novice
programming mistakes: Educator beliefs vs. student
data,” in Proceedings of the tenth annual conference on
International computing education research. ACM, 2014,
pp. 43–50.

[6] J. C. Campbell, A. Hindle, and J. N. Amaral, “Syntax
errors just aren’t natural: Improving error reporting with
language models,” in Proceedings of the 11th Working
Conference on Mining Software Repositories. ACM
Press, 2014, pp. 252–261, available: http://dl.acm.org/
citation.cfm?doid=2597073.2597102.

[7] R. Gupta, S. Pal, A. Kanade, and S. Shevade, “DeepFix:
Fixing common C language errors by deep learning.” in
AAAI, 2017, pp. 1345–1351.

[8] S. Bhatia and R. Singh, “Automated correction for
syntax errors in programming assignments using recurrent
neural networks,” 2016, available: http://arxiv.org/abs/
1603.06129.

[9] N. C. C. Brown, M. Kölling, D. McCall, and I. Utting,
“Blackbox: a large scale repository of novice programmers’
activity,” in Proceedings of the 45th ACM technical
symposium on Computer Science Education. ACM,
2014, pp. 223–228.

[10] “Clang—Expressive Diagnostics,” October 2016, avail-
able: http://clang.llvm.org/diagnostics.html.

[11] C. L. Jeffery, “Generating LR Syntax Error Messages
from Examples,” ACM Transactions on Programming
Languages and Systems (TOPLAS), vol. 25, no. 5, pp.
631–640, 2003.

[12] The Eclipse Foundation, “4.7 - Eclipse project downloads,”
http://download.eclipse.org/eclipse/downloads/drops4/
R-4.7-201706120950/#JDTCORE, 2017, (Accessed on
08/09/2017).

[13] A. Altadmri and N. C. Brown, “37 million compilations:
Investigating novice programming mistakes in large-scale
student data,” in Proceedings of the 46th ACM Technical
Symposium on Computer Science Education. ACM, 2015,

pp. 522–527.
[14] M. Kölling, B. Quig, A. Patterson, and J. Rosenberg,

“The BlueJ system and its pedagogy,” Computer Science
Education, vol. 13, no. 4, pp. 249–268, 2003. [Online].
Available: http://www.tandfonline.com/doi/abs/10.1076/
csed.13.4.249.17496

[15] M. C. Jadud, “Methods and tools for exploring
novice compilation behaviour,” in Proceedings of
the second international workshop on Computing
education research. ACM, 2006, paper
http://www.jadud.com/people/mcj/files/2006-icer-
jadud.pdf, pp. 73–84.

[16] J. Jackson, M. J. Cobb, and C. Carver, “Identifying top
Java errors for novice programmers,” in Frontiers in
Education Conference, vol. 35. STIPES, 2005, p. T4C.

[17] S. Garner, P. Haden, and A. Robins, “My program is
correct but it doesn’t run: a preliminary investigation
of novice programmers’ problems,” in Proceedings of
the 7th Australasian conference on Computing education-
Volume 42. Australian Computer Society, Inc., 2005, pp.
173–180.

[18] L. McIver, “The effect of programming language on error
rates of novice programmers,” in 12th Annual Workshop of
the Psychology of Programming Interest Group. Citeseer,
2000, pp. 181–192.

[19] S. K. Kummerfeld and J. Kay, “The neglected battle
fields of syntax errors,” in Proceedings of the fifth
Australasian conference on Computing education-Volume
20. Australian Computer Society, Inc., 2003, pp. 105–
111.

[20] M. Hristova, A. Misra, M. Rutter, and R. Mercuri,
“Identifying and correcting Java programming errors for
introductory computer science students,” ACM SIGCSE
Bulletin, vol. 35, no. 1, pp. 153–156, 2003.

[21] P. Denny, A. Luxton-Reilly, and E. Tempero, “All syntax
errors are not equal,” in Proceedings of the 17th ACM
annual conference on Innovation and technology in
computer science education. ACM, 2012, pp. 75–80.

[22] T. Dy and M. M. Rodrigo, “A detector for non-literal
Java errors,” in Proceedings of the 10th Koli Calling
International Conference on Computing Education
Research, ser. Koli Calling ’10. New York, NY,
USA: ACM, 2010, pp. 118–122. [Online]. Available:
http://doi.acm.org/10.1145/1930464.1930485

[23] M.-H. Nienaltowski, M. Pedroni, and B. Meyer,
“Compiler error messages: What can help novices?”
SIGCSE Bull., vol. 40, no. 1, pp. 168–172, Mar. 2008.
[Online]. Available: http://doi.acm.org/10.1145/1352322.
1352192

[24] G. Marceau, K. Fisler, and S. Krishnamurthi, “Measuring
the effectiveness of error messages designed for novice
programmers,” in Proceedings of the 42nd ACM technical
symposium on Computer science education. ACM, 2011,
pp. 499–504.

[25] B. A. Becker, “An exploration of the effects of enhanced
compiler error messages for computer programming

http://doi.acm.org/10.1145/2016911.2016930
http://openjdk.java.net/groups/compiler/
http://dl.acm.org/citation.cfm?doid=2597073.2597102
http://dl.acm.org/citation.cfm?doid=2597073.2597102
http://arxiv.org/abs/1603.06129
http://arxiv.org/abs/1603.06129
http://clang.llvm.org/diagnostics.html
http://download.eclipse.org/eclipse/downloads/drops4/R-4.7-201706120950/#JDTCORE
http://download.eclipse.org/eclipse/downloads/drops4/R-4.7-201706120950/#JDTCORE
http://www.tandfonline.com/doi/abs/10.1076/csed.13.4.249.17496
http://www.tandfonline.com/doi/abs/10.1076/csed.13.4.249.17496
http://doi.acm.org/10.1145/1930464.1930485
http://doi.acm.org/10.1145/1352322.1352192
http://doi.acm.org/10.1145/1352322.1352192

novices,” Master’s thesis, Dublin Institute of Technology,
2015.

[26] T. Barik, K. Lubick, S. Christie, and E. Murphy-Hill,
“How developers visualize compiler messages: A founda-
tional approach to notification construction,” in Software
Visualization (VISSOFT), 2014 Second IEEE Working
Conference on. IEEE, 2014, pp. 87–96.

[27] D. Pritchard, “Frequency distribution of error messages,”
in Proceedings of the 6th Workshop on Evaluation and
Usability of Programming Languages and Tools. ACM,
2015, pp. 1–8.

[28] A. V. Aho and T. G. Peterson, “A minimum distance
error-correcting parser for context-free languages,” SIAM
Journal on Computing, vol. 1, no. 4, pp. 305–312, 1972.

[29] R. A. Thompson, “Language correction using probabilistic
grammars,” IEEE Transactions on Computers, vol. 100,
no. 3, pp. 275–286, 1976.

[30] T. Parr and K. Fisher, “LL(*): The foundation of the
ANTLR parser generator,” in Proceedings of the 32Nd
ACM SIGPLAN Conference on Programming Language
Design and Implementation, ser. PLDI ’11. New York,
NY, USA: ACM, 2011, pp. 425–436. [Online]. Available:
http://doi.acm.org/10.1145/1993498.1993548

[31] C. Omar, I. Voysey, M. Hilton, J. Sunshine, C. Le Goues,
J. Aldrich, and M. A. Hammer, “Toward semantic
foundations for program editors,” 2017, preprint.

[32] “Lamdu,” http://www.lamdu.org/, (Accessed on
09/26/2017).

[33] J. Turner, “Shape of errors to come—the Rust program-
ming language blog,” August 2016, available: https://blog.
rust-lang.org/2016/08/10/Shape-of-errors-to-come.html.

[34] F. Mulder, “Awesome error messages for Dotty,” Octo-
ber 2016, available: http://scala-lang.org/blog/2016/10/14/
dotty-errors.html.

[35] E. Czaplicki, “Compiler errors for humans,” http://
elm-lang.org/blog/compiler-errors-for-humans, 2015.

[36] V. Raychev, M. Vechev, and E. Yahav, “Code Completion
with Statistical Language Models,” in Proceedings of
the 35th ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI '14.
ACM, 2014, pp. 419–428.

[37] M. White, C. Vendome, M. Linares-Vasquez, and
D. Poshyvanyk, “Toward Deep Learning Software Repos-
itories,” in 2015 IEEE/ACM 12th Working Conference on
Mining Software Repositories, 2015, pp. 334–345.

[38] A. Y. Hannun, C. Case, J. Casper, B. Catanzaro,
G. Diamos, E. Elsen, R. Prenger, S. Satheesh,
S. Sengupta, A. Coates, and A. Y. Ng, “Deep Speech:
Scaling up end-to-end speech recognition,” 2014, preprint.
[Online]. Available: http://arxiv.org/abs/1412.5567

[39] V. J. Hellendoorn and P. Devanbu, “Are deep neural
networks the best choice for modeling source code?”
in Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering. ACM, 2017, pp.
763–773.

[40] H. K. Dam, T. Tran, and T. Pham, “A deep language

model for software code,” 2016, preprint. [Online].
Available: http://arxiv.org/abs/1608.02715

[41] R. Dyer, H. A. Nguyen, H. Rajan, and T. N. Nguyen,
“Boa: A Language and Infrastructure for Analyzing Ultra-
Large-Scale Software Repositories,” in 35th International
Conference on Software Engineering, ser. ICSE 2013,
2013, pp. 422–431.

[42] G. Gousios, “The GHTorrent dataset and tool suite,”
in Proceedings of the 10th Working Conference
on Mining Software Repositories, ser. MSR ’13.
IEEE Press, 2013, pp. 233–236. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2487085.2487132

[43] J. Gosling, B. Joy, G. Steele, G. Bracha, and A. Buckley,
The Java Language Specification, 8th ed. Oracle
Corporation, February 2015, available: https://docs.oracle.
com/javase/specs/jls/se8/jls8.pdf.

[44] ——, Lexical Structure, 8th ed. Oracle Corporation,
February 2015, ch. 3, available: https://docs.oracle.com/
javase/specs/jls/se8/html/jls-3.html.

[45] C. D. Manning and H. Schütze, Foundations of statistical
natural language processing, 1st ed. Canbridge, MA:
The MIT Press, May 1999.

[46] F. Chollet et al., “Keras,” https://github.com/fchollet/keras,
2015.

[47] Theano Development Team, “Theano: A Python
framework for fast computation of mathematical
expressions,” May 2016, preprint. [Online]. Available:
http://arxiv.org/abs/1605.02688

[48] T. Tieleman and G. Hinton, “RMSprop gradient
optimization,” April 2014, course slides. [Online].
Available: http://www.cs.toronto.edu/~tijmen/csc321/
slides/lecture_slides_lec6.pdf

[49] S. D. Smith, N. Zemljic, and A. Petersen, “Modern goto:
Novice programmer usage of non-standard control flow,”
in Proceedings of the 15th Koli Calling Conference on
Computing Education Research, ser. Koli Calling ’15.
New York, NY, USA: ACM, 2015, pp. 171–172. [Online].
Available: http://doi.acm.org/10.1145/2828959.2828980

[50] A. Altadmri, M. Kölling, and N. C. Brown, “The cost
of syntax and how to avoid it: Text versus frame-based
editing,” in 2016 IEEE 40th Annual Computer Software
and Applications Conference (COMPSAC), 2016.

[51] V. I. Levenshtein, “Binary codes capable of correcting
deletions, insertions, and reversals,” in Soviet physics
doklady, vol. 10, no. 8, 1966, pp. 707–710.

[52] D. P. Kingma and J. Ba, “Adam: A method for
stochastic optimization,” 2014. [Online]. Available:
http://arxiv.org/abs/1412.6980

[53] Z. Tu, Z. Su, and P. Devanbu, “On the localness of
software,” in Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software
Engineering. ACM, 2014, pp. 269–280.

[54] O. Tange, “GNU parallel—the command-line power
tool,” ;login: The USENIX Magazine, vol. 36, no. 1,
pp. 42–47, Feb 2011. [Online]. Available: http:
//www.gnu.org/s/parallel

http://doi.acm.org/10.1145/1993498.1993548
http://www.lamdu.org/
https://blog.rust-lang.org/2016/08/10/Shape-of-errors-to-come.html
https://blog.rust-lang.org/2016/08/10/Shape-of-errors-to-come.html
http://scala-lang.org/blog/2016/10/14/dotty-errors.html
http://scala-lang.org/blog/2016/10/14/dotty-errors.html
http://elm-lang.org/blog/compiler-errors-for-humans
http://elm-lang.org/blog/compiler-errors-for-humans
http://arxiv.org/abs/1412.5567
http://arxiv.org/abs/1608.02715
http://dl.acm.org/citation.cfm?id=2487085.2487132
https://docs.oracle.com/javase/specs/jls/se8/jls8.pdf
https://docs.oracle.com/javase/specs/jls/se8/jls8.pdf
https://docs.oracle.com/javase/specs/jls/se8/html/jls-3.html
https://docs.oracle.com/javase/specs/jls/se8/html/jls-3.html
https://github.com/fchollet/keras
http://arxiv.org/abs/1605.02688
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://doi.acm.org/10.1145/2828959.2828980
http://arxiv.org/abs/1412.6980
http://www.gnu.org/s/parallel
http://www.gnu.org/s/parallel

	Introduction
	Prior work
	Methodology
	Mining GitHub for syntactically-valid training examples
	Tokenization
	Tokenization pipeline

	Training n-gram models for syntax error correction
	Detecting syntax errors with n-gram models
	Fixing syntax errors with n-gram models

	Training LSTMs for syntax error correction
	Detecting syntax errors with dual LSTM models
	Fixing syntax errors with dual LSTM models

	Mining Blackbox for novice mistakes
	Retrieving invalid and fixed source code
	Findings

	Evaluation
	Partitioning the data
	Finding the syntax error
	Fixing the syntax error

	Results
	Improving the performance of the LSTMs

	Discussion
	Threats to validity

	Conclusions

