
Got Issues? Do New Features and Code

Improvements Affect Defects?

Daryl Posnett

Department of Computer Science

University of California, Davis

Davis, CA

dpposnett@ucdavis.edu

Abram Hindle

Department of Computer Science

University of California, Davis

Davis, CA

ah@softwareprocess.es

Prem Devanbu

Department of Computer Science

University of California, Davis

Davis, CA

devanbu@ucdavis.edu

Abstract—There is a perception that when new features are
added to a system that those added and modified parts of the
source-code are more fault prone. Many have argued that new
code and new features are defect prone due to immaturity, lack
of testing, as well unstable requirements. Unfortunately most
previous work does not investigate the link between a concrete
requirement or new feature and the defects it causes, in particular
the feature, the changed code and the subsequent defects are
rarely investigated. In this paper we investigate the relationship
between improvements, new features and defects recorded within
an issue tracker. A manual case study is performed to validate
the accuracy of these issue types. We combine defect issues
and new feature issues with the code from version-control
systems that introduces these features; we then explore the
relationship of new features with the fault-proneness of their
implementations. We describe properties and produce models of
the relationship between new features and fault proneness, based
on the analysis of issue trackers and version-control systems. We
find, surprisingly, that neither improvements nor new features
have any significant effect on later defect counts, when controlling
for size and total number of changes.

I. INTRODUCTION

Like locusts upon a field, bugs, defects, faults, errors, and

failures plague software development. Software defects are

costly and detrimental; as a result, they have long been the

subject of anecdote, observation, experience and sometimes

superstition. In this paper, we focus on some specific hypothe-

ses, concerning different types of changes to code:

• Change is buggy: frequently changed code is often buggy.

• New features introduce bugs: new features are imma-

ture, and immature code has a greater chance of being

buggy [1].

• Improvements to existing features reduces bugs: improve-

ments to code quality should reduce defect proneness.

• Major improvements, on the other hand, can cause bugs:

if we change too much code, we have too much defect

prone immature code.

But are these beliefs well-founded? Is there empirical evi-

dence to support a belief that feature additions and improve-

ments can increase future defect-repair effort?

Much software engineering research is dedicated to the

etiology of defects and the software features that uncover

future defects. For example, Ostrand et al. found evaluated

software and process metrics to find that change-prone code

tended to be defect-prone as well [2].

However, some changes, are specifically made to fix defects;

and so, in fact, we can expect these changes be associated

with fewer future defects, while other types of changes may

actually introduce new defects. In this paper we will address

these beliefs using a particularly interesting data-set.

We will exploit both version control systems (Git and

Subversion) and an issue tracker used by the Apache Software

Foundation (ASF): the JIRA issue tracker. ASF repositories

are useful because commits are often linked to JIRA issues.

We rely on the annotations provided by developers and issue

reporters, as they manually annotate JIRA issues by ticket

type, these ticket types include: bug (defects), new feature

(code that adds new functionality), and improvement (code

that improves code quality). These issue tickets and their

relationships within the JIRA database are the central foci of

our study. We manually inspect many of these issue tickets for

accuracy and to learn the purpose of each kind of ticket.

We then used regression modeling to study the relationship

between new features and improvements changes and defect-

fixing activity. Specifically, we improvements issues and new

features issues to the defect-repair effort in later releases using

the version control system and the issue tracker. The main

contributions described in this paper are:

• We find that new features and improvements are nega-

tively correlated with defect-fixing activity in the same

file, in the same release.

• Consistent with prior research, we find that code changes

are strongly, and significantly associated with future de-

fect fixing activity.

• However, we find that, in fact, new features and improve-

ments are not correlated with future defect-fixing activity.

New feature additions, in particular, show no relation with

future defect-fixing activity.

• Upon further manual examination, we find that new

features, in particular, in these projects are subject to

careful review; thus, we find substantive support for

Linus’ law in our data [3].

We argue that these results are actionable. Contrary to

conventional wisdom and prior research our results show that



Project Description Files Packages Commits Issues Defects Improvements New Features

James 2.3.0 - 3.0-M2 Mail Server 375-477 39-85 4467 996 281 413 83
Lucene 2.2.0 - 3.0.3 Text Search Library 541-1368 45-102 12384 8607 2093 3612 647
Wicket 1.3.0 - 1.3.7 Web Framework 1894-1947 246-249 7505 2935 953 477 156
XercesJ 2.8.1 - 2.11.0 Java XML parser 740-827 67-71 4934 576 307 189 80

TABLE I: Apache projects used in this study.

the new features and the improvements documented in the issue

tracker do not interact with future defects. A qualitative deep-

dive into the data suggests an explanation: a more rigorous

inspection and vetting process for new feature code.

A. Issue Tracking

Issue trackers, like JIRA, are commonplace in OSS devel-

opment. The JIRA issue tracking system supports multiple

issue types. According to the JIRA documentation, a defect,

labeled as Bug is “A problem which impairs or prevents the

functions of the product”, a New Feature is, “A new feature of

the product”, and an Improvement is, “An enhancement to an

existing feature” [4]. Other kinds of custom issue types that are

commonly used include Tasks, Tests, SubTasks, and Wishes. In

this work we consider the relationship between the standard

issue types of Bugs, Improvements, and New Features.

1) Bugs: There is a substantial body of research that

links various code and process properties to the presence

of defects [2], [5], [6], [7]. In particular, the size of code

(measured as LOC) and how much it changes (measured either

as the number of commits or the degree of “churn”, viz.., added

or change lines of code) have all been positively linked with

the defect propensity of source code [8].

2) New Features: New features add new functionality to the

code. New features would typically be in response to changing

user requirements and may require both new code as well

as significant changes to existing code. New features tend to

imply new defect-prone code [1].

3) Improvements: Intuitively, improvements to code should

improve the quality. Improvements are primarily perfective in

nature, but still could induce defects.

Our first pair of research questions, which we address

by doing a manual, qualitative case study, concerning the

accuracy of the data:

Research Question 1: Are issues marked new feature

actually new features?

Research Question 2: Are issues marked improve-

ments actually improvements?

The next pair of research questions are concerned with the

effect of new features and improvements on bug fixing activity.

New feature code, being new functionality, can certainly be

expected to increase fault-proneness, measured by proxy via

bug fixing activity; we could also suspect that improvements

to existing features, could also potentially introduce defects.

Research Question 3: Does adding new features to

code affect defect fixing activity in the same release?

Research Question 4: Do improvements to code affect

defect fixing activity in the same release?

Quality problems in code often manifest well-after the code

is actually introduced. Our next pair of question address if the

effect of code improvement on defects within the same release

is not as strong as the effect on later releases.

Research Question 5: Do new features affect code

quality in a future release?

Research Question 6: Do improvements to code affect

code quality in a future release?

B. Motivation

In the field of defect prediction there have been numerous

studies that consider structural and source code centric fea-

tures [7]. While this obviously has merit, and has been quite

successful, it is less common to see process-related data [8],

[9], [6], such as issue tracker data that is strongly related to

defect data. Thus, the effects of process-related behaviour,

such as improvements or new features, on fault-proneness,

have not been as well-studied.

II. CASE STUDY

This case study is meant to ensure the reliability and

construct validity of this study by investigating what the issue

tracker data consists of and if its issue types of bugs, new fea-

tures and improvements, are accurately applied. We manually

read and tagged 240 issues. By doing this we could observe

that performance, refactoring and documentation changes are

associated with improvements.

Our methodology for the case study of the sampled JIRA

issues used a manual coding approach, based on grounded

theory. Our sampling approach considered a) all issues in

general, and b) linked issues, issues linked to commits, in

particular. Within the random sample, 21% of improvements



and new features were linked where 24.4% of all issues across

4 projects were linked. We sampled 10 random and 10 linked

new features, improvements and bugs from each project (40

random and 40 linked issues per project). We inspected 240

issues in total; a subset of the issues used within the regression

study.

We annotated each issue tags derived using a grounded

theory approach. The final tags were actual feature, actual

improvement, actual bug, contribution (a patch or content),

external contribution (contributions from someone without

commit access), performance (efficiency related), refactor (a

refactoring), unaccepted (rejected contributions and reports),

and documentation. The annotator (the second author) read the

JIRA issues annotated the issue with one of these tags. These

annotations were briefly inspected by the first author.

A. What are new features?

Figure 1a depicts the distribution of tags between projects,

and features. A Persian language analyzer is an example of

a new feature from Lucene, many other new features were

backports from later versions. We investigated if the new

features type was consistently applied:

Result 1: Across all the projects, most of the issues

tagged new features are indeed new features. In fact

79/80 (98.8%) new features inspected were consistent.

Although 12/80 of the new features could be bug fixes as

well.

New features issues added functionality or addressed new

or existing requirements. 18/80 of the new features were from

an external contributor and had received a code inspection.

B. What are improvements?

We wanted to ensure that the issue types of improvements

were consistently applied:

Result 2: Across all projects the issues marked im-

provements were indeed usually describing improvements.

Those that are not improvements are usually new features

(22/80) and sometimes bugs (3/80). In fact most of the

improvements inspected were consistent 66/80 (82%).

Figure 1b depicts the relationship and distribution of tags

between projects, and improvements. It clearly shows that

many improvements are potentially bugs and some are really

new features.

10/80 of the improvements inspected were documentation

changes (Javadoc, websites, manuals, and examples).

Many of the improvements issues dealt with non-functional

requirements such as maintainability (refactorings), perfor-

mance and usability (UI changes). An example of an external

improvement from Xerces was to change the access modifiers

of a class to allow extension. 9/80 of improvements were code-

inspected external contributions.

A
c
tu

a
l 
F

e
a
tu

re

A
c
tu

a
l 
Im

p
ro

ve
m

e
n
t

A
c
tu

a
l 
B

u
g

C
o
n
tr

ib
u
ti
o
n

E
x
te

rn
a
l 
C

o
n
tr

ib
u
to

r

P
e
rf

o
rm

a
n
c
e

R
e
fa

c
to

r

U
n
a
c
c
e
p
te

d

D
o
c
u
m

e
n
ta

ti
o
n

Wicket

XercesJ

James

Lucene

0

20

40

60

80

New Features (all)

(a)

A
c
tu

a
l 
F

e
a
tu

re

A
c
tu

a
l 
Im

p
ro

ve
m

e
n
t

A
c
tu

a
l 
B

u
g

C
o
n
tr

ib
u
ti
o
n

E
x
te

rn
a
l 
C

o
n
tr

ib
u
to

r

P
e
rf

o
rm

a
n
c
e

R
e
fa

c
to

r

U
n
a
c
c
e
p
te

d

D
o
c
u
m

e
n
ta

ti
o
n

Wicket

XercesJ

James

Lucene

0

10

20

30

40

50

60

Improvements (all)

(b)

Fig. 1: Distribution of improvements and new features by tag.

C. What are Bugs?

We inspected linked and unlinked bug issues and we found

that 79/80 bug issues were in fact bugs. We also found that

older projects such as Xerces had many bugs that were not

linked to commits because JIRA was not in use at the time.

Thus the bug issue type seems to be consistently applied.

D. How are JIRA issues used?

We observed that new features, improvements and bugs

were consistently labelled as such. Improvements were rejected

more by the project’s developers than new features (13/80
versus 8/80).

JIRA issues were used by external contributors to submit

and discuss code contributions with the core developers. 30%

or 72/240 of the inspected issues were external contributions.

54% or 39/72 of external contribution tagged issues had a

code inspection discussion. This supports our suggestion that

Linus’s Law is potentially negating the effect of the new

features and improvements have on defects.

1) Linked Issues versus Population: In our random sample,

only 21% of the improvement and new feature issues were

actually linked to version control commits by a JIRA ID. Often

backports were not linked in that particular issue.

Across linked and random samples features and issues

received an equal amount of discussion. There were more

actual bug report-like issues found in the linked sample.

Linked samples more often accepted as contributions.

2) Issue Use per Project: James in particular had fewer

unaccepted and documentation issues made against it. Xerces

was more infrastructural and had many bug-fix oriented issues

labelled as new features and improvements. Xerces did not

have many linked new features because JIRA was adopted

after Xerces was mature. Wicket had fewer external contri-

butions of improvements and new features than others. Often

Wicket’s new features were bug fixes. Lucene had many im-

provements that were serious performance bugs (for example

exponential time algorithms) labelled as improvements.

III. REGRESSION STUDY

In the previous section we performed a manual case study

on a sample of issues from the Jira database. In this section we



perform a regression study over the full dataset as presented

in Table I. We begin by discussing the relationship between

improvements, new features, and bugs in the same release. Any

relationship will be dependent on overlap between bug fixing

activity and the addition of improvements and new features.

Table II shows that the ratio of files linked to new features and

improvements in each project that were also linked to bug

fixes varies but is non-zero. Consequently, we use negative

binomial regression to regress the number of bug fixes within

a release on the number of improvements and new features

to asses the nature of the relationship between the activities.

Negative binomial regression is an appropriate here because

it can handle overdispersion in the response, which is almost

always the case with software defect data [10].

Features Improvements

James 0.18 0.43
XercesJ 0.06 0.14
Lucene 0.17 0.58
Wicket 0.04 0.18

TABLE II: Fraction of files containing linked issues in files

that are also linked to defects.

For these regression models we are primarily interested in

the direction of the effect of improvement and new feature

activity on bug fixing activity. We want to control as much as

possible for other sources of variation that might be incorrectly

attributed to the variables of interest. We control for size of

the file by including the log transformed lines of code and

we control for the number of changes to the file by including

the square root of the number of commits. Comparison with

the non-transformed variable shows that this transformation

yields a better fit using Vuong’s non-nested test with p-value

< 0.0005 in all cases [11].

In addition we include dummy variables for each release to

capture all between release variation for the model allowing us

to focus on the within release contributions of the remaining

independent variables on the outcome [10]. This approach

has been used previously in modeling software outcomes [2],

[12]. We include these factors purely for control, neither the

significance nor the value of the coefficients are relevant to

our results which are presented in Table III.

For all projects our controls of change activity and size

are positively correlated with bug fixing activity as expected.

Change and size are well known predictors of defects and

we expect that larger files that change more often will have

a greater number of defects, and consequently, higher defect

fixing activity. We checked for multicollinearity by verifying

that model VIF (Variance Inflation Factor) was within accept-

able bounds [10]. With respect to our variables of interest, for

Lucene, Xerces, and Wicket, improvements and new features

were negatively associated with defect fixing activity. Adding

new features to a file, or adding improvements to a file, in the

same release is correlated with lower bug fixing activity in that

release. We note here that, modulo developer time, activity

over issues within a single file is not a zero-sum game, viz.,

James Lucene Wicket XercesJ

improvements -0.0628 -0.3965 -1.3167 -0.6779

(0.0763) (0.0241) (0.0730) (0.1839)
new features 0.3470 -0.3233 -0.8528 -0.6744

(0.1517) (0.0538) (0.1200) (0.2481)
log(loc + 0.5) 0.5758 0.1912 0.2290 0.4595

0.0754 (0.0288) (0.0288) (0.0585)
√

commits 0.5826 1.8346 2.7173 1.5610

0.0926 (0.0480) (0.0749) (0.0950)

(a) Number of Current Defects as Response

James Lucene Wicket XercesJ

previous improvements -0.0458 -0.0515 -0.2723 0.1921
(0.1829) (0.0349) (0.1216) (0.1861)

previous new features 0.5518 -0.0380 -0.3383 -0.0275
(0.2309) (.0745) (0.2518) (0.3621)

log(previous loc + 0.5) 1.3986 0.5036 0.8987 0.8697

(0.2537) (0.0334) (0.0518) (0.0732)
√

previous commits 0.3861 0.7437 0.9060 0.2485

(0.2630) (0.0604) (0.1062) (0.1062)

(b) Number of Current Defects as Response with features from previous release

TABLE III: Relevant coefficients for negative binomial regres-

sion models over files. Significant coefficients are bolded after

correcting p-values using Benjamini Hochberg correction [13].

Standard errors are shown in parenthesis.

developer attention is variable. We can see from Table II that

developers are performing multiple activities on the same file

within a single release. The results of our models suggest,

however, that the choice to improve existing code or add new

features is less likely to co-occur with bug fixing activity in

the same file. The results for James are somewhat different in

that improvements are not significant and adding new features

is positively associated with bug fixing activity, albeit, at a

lower significance.

So with respect to our third and fourth research questions

which address the relationship between code improvement and

defect fixing activity:

Result 3: Adding new features to code is negatively

correlated with defect fixing activity, in the same file, for

three out of four projects studied. In the fourth project

adding new features is positively correlated with defect

fixing activity.

Result 4: Improvements to code are negatively corre-

lated with defect fixing activity in three out of four projects

studied. Improvements were not significant in James.

In other words, more often than not, developers choose to

either address improvements and new features, or fix bugs.

Only in James did we see a positive relationship between new

feature activity and defect fixing activity.

We now turn to the central (title) question of the paper, con-

cerning the current effect of past new feature and improvement

effort. For each of the four projects we regressed bugs in the



current release on size and commits from the previous release

as well as the number of new features and improvements from

the previous release. The results of are presented in Table

III. With respect to new features, the coefficients were not

significant in any of the projects studied. This may, in part, be

a consequence of the fact that many new features are external

contributions which often require core members to inspect

code prior to commit. Inspections can be effective at detecting

defects [1]. Other have shown that a lack of significance can

be important when trying to determine if a relationship or a

lack of relationship exists between variables [14]. We used

the same nested modeling approach used in [14]: we first

built a model considering only the control variables of size

and previous commit history; and then built the full model

with previous new features and improvements to judge their

explanatory power.

Result 5: Adding new features does not directly con-

tribute to later file fixing activity in any of the projects

studied.

We also find that previous code improvement does not affect

defect fixing activity in later releases. For all projects the

coefficient for improvements was not significant after p-value

correction.

Result 6: Adding improvements to code does not

directly contribute to later file fixing activity in any of

the projects studied.

In all cases the models built with previous improvements

and previous new features did not add statistically significant

explanatory power to the models as determined by a chi-sqare

test of nested model fit.

Discussion: Our findings have some implications. First, while

they confirm prior results that changes per se do engender

subsequent defect-repair effort, new features and improve-

ments are not associated with defect-repair at the file level.

Second, a manual inspection of the issues suggest a cause: new

feature and improvements (especially the former) are subject

to careful manual review, and thus may be benefiting from

“many eyeballs” [3] effect. Finally, this approach suggests that

future defect/effort prediction studies might well benefit from

exploiting the available data embedded in issue histories.

IV. CONCLUSION

We have exploited the linked process data from the JIRA

issue tracker and version control systems of multiple Apache

projects in order to discuss the relationship between improve-

ments and new features to the defect proneness of the source

code that is changed.

Our case study confirmed that improvements and new fea-

tures were in fact annotated correctly. Improvements were

often refactorings, UI improvements and software quality

relevant.

We then tried to model this relationship between improve-

ments, new features and defects using a count regression

model and the count of improvement and new feature issues

as predictors. One would expect that new features would

cause defect prone code while improvements would improve

quality and reduce the defect-proneness of code. We observed,

however, that in most cases, both file activity in improvements

and new features is related to a reduction of activity in

defect fixing in the same release. We also observed that code

improvements and new features in previous releases have no

significant impact on bug fixing activity in later releases This

lack of significance could indicate that we are observing Linus’

Law: the inspection of improvements and new features reduces

their changes’ effect on defect proneness.

ACKNOWLEDGMENTS

All authors gratefully acknowledge support from the Na-

tional Science Foundation, grant numbers 0964703 and

0613949. Devanbu gratefully acknowledges support from IBM

Research and Microsoft Research. Any opinions, findings, and

conclusions or recommendations expressed in this material are

those of the author(s) and do not necessarily reflect the views

of the National Science Foundation.

REFERENCES

[1] C. Jones, Applied software measurement: assuring productivity and

quality. New York, NY, USA: McGraw-Hill, Inc., 1991.
[2] T. J. Ostrand, E. J. Weyuker, and R. M. Bell, “Where the bugs are,”

SIGSOFT Softw. Eng. Notes, vol. 29, pp. 86–96, July 2004.
[3] E. S. Raymond, The Cathedral and the Bazaar: Musings on Linux and

Open Source by an Accidental Revolutionary. Sebastopol, CA, USA:
O’Reilly & Associates, Inc., 2001.

[4] Atlassian, “JIRA Concepts: What is an issue,”
http://confluence.atlassian.com/display/JIRA/What+is+an+Issue, 2010.

[5] T. Koponen and H. Lintula, “Are the changes induced by the defect
reports in the open source software maintenance,” in Proc. of the 2006

Inter. Conf. on Soft. Eng. Research (SERP’06), 2006, pp. 429–435.
[6] J. Ratzinger, M. Pinzger, and H. Gall, “Eq-mine: Predicting short-term

defects for software evolution,” in Fundamental Approaches to Software

Engineering, ser. Lecture Notes in Computer Science, M. Dwyer and
A. Lopes, Eds. Springer Berlin / Heidelberg, 2007, vol. 4422.

[7] T. Holschuh, M. Pauser, K. Herzig, T. Zimmermann, R. Premraj, and
A. Zeller, “Predicting defects in SAP Java code: An experience report,”
in International Conference on Software Engineering, 2009.

[8] N. Nagappan and T. Ball, “Using software dependencies and churn
metrics to predict field failures: An empirical case study,” in Proceedings

of the First International Symposium on Empirical Software Engineering

and Measurement, ser. ESEM ’07. Washington, DC, USA: IEEE
Computer Society, 2007, pp. 364–373.

[9] P. Zhang and A. Mockus, “On measurement and understanding of
software development processes,” 2003.

[10] J. Cohen, Applied multiple regression/correlation analysis for the be-

havioral sciences. Lawrence Erlbaum, 2003.
[11] Q. Vuong, “Likelihood ratio tests for model selection and non-nested

hypotheses,” Econometrica: Journal of the Econometric Society, pp.
307–333, 1989.

[12] D. Posnett, C. Bird, and P. Dévanbu, “An Empirical Study on the
Influence of Pattern Roles on Change-Proneness,” Empirical Software

Engineering, An International Journal, pp. 1–28, 2010.
[13] Y. Benjamini and Y. Hochberg, “Controlling the false discovery rate:

a practical and powerful approach to multiple testing,” Journal of the

Royal Statistical Society. Series B (Methodological), vol. 57, no. 1, pp.
289–300, 1995.

[14] C. Bird, N. Nagappan, P. T. Devanbu, H. Gall, and B. Murphy, “Does
distributed development affect software quality? an empirical case study
of windows vista.” in ICSE’09, 2009, pp. 518–528.


