
Complexity: Let’s not make this complicated    
 

By Abram Hindle <hindle1@ualberta.ca> 

Introduction 
“Keep it simple,” is a phrase I like to say when I teach my introduction to software engineering 
course. “Keeping it simple is easier said than done,” is another phrase I also like to say in the 
course. It’s funny how keeping it simple in software development can often mean revising and 
refactoring an existing system until it elegant enough to afford adaptation and change. Simplicity 
and elegance are goals of many developers when they're developing software. Developers 
often view complexity as the opposite of simplicity but I argue that complexity is not the right 
word. I think complicated software is really what people are worried about. In other fields, such 
as physics or even education [Doll 1993], complexity refers to how agents, individuals, and 
entities interact with each other via a small set of rules or processes to produce intricate and 
interesting behaviors much birds and fish flocking and swarming together in complex patterns 
without collisions. Analogously, developers want their code to compose a solution both clearly 
and elegantly, allowing for dynamism and adaptability. What developers are really worried about 
is that their software is burdened by too many modules affected by too many features with 
cross-cutting concerns. They are concerned that their software will be fragile and hard to 
change. They are concerned about software that lacks the elegance or dynamism to enable 
customisation and afford future changes. This is what complicated software is. The systems that 
we seek to build that exhibit elegance and simplicity are complex systems that through a set of 
rules or contracts that are intentionally or naturally kept small one can customize and extend 
such a system with ease. We Fear complication because it leads to brittle designs that are hard 
to change. Complication means we have to juggle too many competing concerns when we 
maintain our particular module. 
 
In this article I’ll discuss simplicity in agile software, the relationship between architectural 
patterns and complexity, the value of simplicity in software engineering research, and why we 
should refer to the formerly perceived complexity in software as complicated software. 

Agile and Simplicity 
Agile software development processes and guidelines, consultants,  and agile practitioners 
argue that you should keep it simple [Beck 2004]. This view was born out of experience with 
developing software systems where functionality and features were created that were not asked 
for but were perhaps expected, implied, or seemed like a natural necessity at the time. These 
extra features often caused maintainability problems later. The agile view of simplicity is much 



like the systems view of complication and complexity. A simple system in agile is not 
complicated, it implements the requirements and the user stories and not much more. To add 
extra features or functionality was to waste time on what was not asked for, as well could 
complicate future changes. The more responsibilities you gave a module the more you would 
have to maintain later. So to Agile, keep it simple it also meant don't do what isn't asked for. The 
agile solution to not addressing potential future requirements was that refactoring, supported by 
unit testing, was always an option---refactoring which was easier with simple uncomplicated 
modules, rather than those complicated by too many responsibilities. The unit testing was a 
feedback mechanism in the process of agile software development, effectively causing Agile 
systems to exhibit complex behaviour through “simple” rules. In Open-source software Jingwei 
Wu confirmed that self-organizing and complex behaviours were being exhibited in open source 
communities [Wu 2007]. 

Regarding Complexity, it’s Complicated? 
Complex software in software engineering typically refers to complicated code. Most measures 
of complexity are measures of information content in the code, whether it is McCabe’s 
Cyclomatic Complexity measuring branching, or Halstead’s Volume measuring the information 
within a block of code---Halstead’s Volume is very similar to entropy of tokens multiplied by 
number of tokens in a code block. Thus when I refer to complexity I refer to systems and 
modules with spartan rule sets, and complicated systems and modules are those with lots of 
concerns and requirements. I argue we should consider changing terminology as complexity is 
often used to enable elegant systems that are extensible and work well and scale and this is by 
making a small set of rules or behaviors that a single modules expected to fulfill thus allowing a 
composition of these sub-modules into an interesting and often complicated looking Software 
System. 
 
What we really fear in software development regarding complexity is actually complication. If we 
look to the behavioral theorists, educators interested in self organization, chaos theorists, and 
some physicists, complex systems are those systems with simple rules that produce elegant 
and complex behaviors or complicated behaviors---this is referred to as complexity. Software 
engineers really seek to build systems that are complex and they seek to avoid building systems 
that are complicated. One example of complexity, as opposed to complicatedness, in software 
engineering is the architectural pattern of Model View Controller (MVC). The role of model and 
view in model-view-controller are those of the modules that represent (model objects) versus the 
modules that present (view objects). MVC allows us to build systems that produce very Dynamic 
Behavior that respond to changes in the environment quickly that synchronize and do not 
require a lot of code to keep views synchronized. If one doesn't use a model like MVC and 
design patterns like the observer pattern it is often hard to update all the relevant GUI 
components that present the data stored within a model. MVC provides a runtime performance 
trade-off for design time performance in terms of lack of complication in design and perhaps 
better maintainability. MVC can produce very elegant systems composed of components that 



follow a very small set of rules rules and contracts that allows systems the dynamic behavior 
that we expect of a high quality applications utilizing modern GUI systems. 

Simplistic Structures of Software 
Perhaps it is complexity, via simplicity, that makes software work. Tim Menzies has argued with 
me that an interesting aspect of software is how complicated we think it is yet how often stable it 
is. The software is being evaluated many times per second and for the most part is is quite 
stable. Most of the programs you use do not crash every second. Many of them will eventually 
crash. Many of them do crash. We complain about those who crash but frankly the norm is that 
software doesn't actually crash on us frequently. Most of the software we use actually does its 
job and actually works. So how is it we are suffering from complicated software when these 
software systems falling apart as much as some would have us believe. In Ubuntu, Campbell et 
al.[Campbell 2016] found that most projects do not have more than 1 crash report causes, while 
some have many different crash report causes and crash reports. Furthermore, It turns out that 
the causes of many software crashes are quite predictable, many crashes are caused by a 
small set of API functions such as strlen, free, and pthread_mutex_lock, with many of these 
common crashing functions producing the same signal (SEGV or ABRT). Crashes occur 
commonly in the same contexts with the same functions. 
 
Perhaps our expression of software is more complex than it is complicated? Other researchers 
have focused on social dynamics and shown this to be case [Wu 2007]. But existing source 
code is typically full of repetitive and that uninteresting patterns are repeated often to produce 
software systems. Through our study of software where we treated source code to natural 
language processing techniques as if source code was a natural utterance [Hindle 2012], we 
found that the information content of software was quite low compared to English language text. 
This means that the language we use to define software is quite simple when compared to 
English text, but it also means it is more repetitive. That is natural language text is far more 
information dense then software source code. Thus less information is being transmitted per 
token or word in source code than in English. Now they aren't equivalent, the vocabularies of 
software source code are often quite large and project specific whereas the vocabulary of a 
language or writing for a particular language like English is often still large but general and does 
not change much across documents. This difference in vocabulary might explain why even 
though software is low in information, the broad vocabulary enables representation of problems 
via identifier naming. Programs are coded in common patterns. 
 

Simplicity in research  
 
As a software engineering researcher I have to deal with complicated research all the time. My 
experience is that papers that push for complicated methods typically are harder to replicate. 
There seems to be more chance of error in communication or replication or reimplementation 



and the costs of the new specific complications whether it be algorithmic, features, 
data-sources, or other dependencies. The benefit to a researcher to build a complicated system 
is that they’ve done lots of work to get a system that performs well. But this comes at a cost 
beyond just the difficulty of replication. For instance if the data required is too expensive to 
gather or not available it often hinders applying the techniques. The pile-up of additional steps 
causes a problem where it is hard to replicate the proposed work and the proposed work cannot 
be used as a baseline unless the source code is actually shared and others can actually 
replicate the work. That level of sharing is actually a quite high bar where is if a system is kept 
simple or clearly defined then it enables more reimplantation more replication. 
 
Research that is left uncomplicated enables better analysis of why a technique or where a 
technique would work. Research that is uncomplicated and simple has a higher chance of 
providing some level of explainability of results through posing relatively simple theories. 
Furthermore keeping a proposed technique uncomplicated means that errors in methodology 
and measurement, and other threats to validity can be further minimized. The promotion of 
simple research faces a barrier that performance of a simple technique might be explainable but 
it’s performance might lag behind more complicated specialized results---this could be a hard 
sell for some program committees. Probably the largest benefit of simplicity in research is to the 
researcher themselves, as they allow their work to be impactful through its replication whether 
as a baseline or a contender. 

Conclusion 
Keeping it simple is easier said than done, but software faces a lot of factors that promote this 
keeping it simple ethos: complication is rarely requested, simplicity promotes complex systems 
that exhibit adaptability and sometimes elegance, software and its failure are often repetitive 
and predictable. All of these factors provide evidence that software is quite complex [Wu 2007] 
and perhaps it is simplicity at the heart of software that enables these complex systems that are 
not overly burdened by complication. 
 
Researchers should consider the value to stakeholders such as developers if methods are kept 
simple and fundamentally replicable. 

 
 
[Kent 2004] Kent Beck and Cynthia Andres. Extreme Programming Explained: Embrace 
Change (2nd Edition). Addison-Wesley Professional. 2004 
 
[Campbell 2016] JC Campbell, EA Santos, A.  Hindle. Anatomy of a crash repository. PeerJ 
Preprints 4:e2601v1 https://doi.org/10.7287/peerj.preprints.2601v1 2016 
 
[Doll 1993] William E. Doll, A Post-modern Perspective on Curriculum, Teachers College Press, 
1993 
 

https://doi.org/10.7287/peerj.preprints.2601v1
https://doi.org/10.7287/peerj.preprints.2601v1


[Hindle 2012] Abram Hindle, Earl T. Barr, Zhendong Su, Premkumar T. Devanbu, and Mark 
Gabel On the Naturalness of Software International Conference on Software 
Engineering (ICSE-2012) Zurich, Switzerland 2012 pp. 837--847 
 
[Wu 2007] J. Wu, R. C. Holt and A. E. Hassan, "Empirical Evidence for SOC Dynamics in 
Software Evolution," 2007 IEEE International Conference on Software Maintenance, Paris, 
2007, pp. 244-254. 

http://softwareprocess.es/2018/pubs.html#hindle12012ICSE

