
CloudOrch: A Portable SoundCard in the Cloud

Abram Hindle
Department of Computing Science

University of Alberta
Edmonton, Alberta, Canada
abram.hindle@ualberta.ca

ABSTRACT
One problem with live computer music performance is the
transport of computers to a venue and the following setup
of the computers used in playing and rendering music. The
more computers involved, the longer the setup and tear-
down of a performance. Each computer adds power and
cabling requirements that the venue must accommodate.
Cloud computing can change all this by simplifying the
setup of many (10s, 100s) of machines with the click of
a button. But there’s a catch, the cloud is not physically
near you, you cannot run an audio cable to the cloud. The
audio from a computer music instrument in the cloud needs
to be streamed back to the performer and listeners. There
are many solutions for streaming audio over networks and
the internet, most of them suffer from high latency, heavy
buffering, or proprietary/non-portable clients. This paper
proposes a portable cloud-friendly method of streaming, al-
most a cloud soundcard, whereby performers can use mo-
bile devices (Android, iOS, laptops) to stream audio from
the cloud with far lower latency than technologies like Ice-
cast. This technology enables near-realtime control over
computer music networks enabling performers to travel light
and perform live with more computers than ever before.

Keywords
cloud computing, web-audio, cloud instruments, cloud or-
chestra

1. INTRODUCTION
Cloud computing is the tech buzzword trumpeted from the
rooftops, as the supposed savior of business and IT, Cloud
computing offers organizations the ability to treat comput-
ing as a utility like they treat power generation and distri-
bution. Few businesses within a city run any sort of power
generation and distribution machinery as it is a utility pro-
vided by electric utility companies. One can get enough
electricity to cook a turkey and recharge an electric car at
the flick of switch, or you can use just enough to power a
meager laptop and a desk lamp. Cloud computing follows
the same model, you no longer have to host your own com-
puters, you can rent virtual computers (virtual machines
(VMs)) and dispatch them to do work for you [4]. If you
have a lot of work, you provision a lot of computers, if you

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NIME’14, June 30 – July 03, 2014, Goldsmiths, University of London, UK.
Copyright remains with the author(s).

do not need them anymore, you release them back into the
cloud. Thus what the cloud promises is elasticity (providing
more computers on demand); as well it treats computing as
a utility. Can the same be true for computer music and
computer music performance?

Imagine now a soloist who walks on stage with a smart-
phone in their hand. They open a web-browser and navigate
to the cloud-sound-card which proceeds to stream music
produced by a real-time computer music synth composed
of a network of 1000s of CPUs, back to the soloist. The
soloist then, via the web, controls and commands these 100s
to 1000s of virtual computers to produce computationally
or information intensive computer music. With a mobile
device, or a laptop, one could connect to the cloud and
stream the audio back, as well as use the web to control the
instrument itself [2].

The problems that face anyone interacting with computer
music, soft-realtime performance, and the cloud are:

• Software support for streaming: not all methods of
streaming have wide software and platform support
(e.g. difficulty of deploying jack on iOS or Android).

• Network support for streaming: many networks exist
behind NATs and firewalls. This means clients must
initiate connections while keeping in mind many ports
are block and UDP based protocols tend not to work.

• Latency of audio streaming: HTML5 audio tag gives
no guarantee on the size of the audio buffer used by a
browser. RTP clients often give no guarantees either.
Icecast and similar MP3 streaming tools tend to incur
heavy encoding latencies into streaming. Large buffers
induce large latency.

• Remote control of cloud instruments: if an instrument
exists on many computers how do they communicate
with each other and how do they communicate back
to the musician?

This work describes an implementation of a web-based
“Cloud sound card”that allows reasonably low latency stream-
ing (100ms to 200ms rather than 30 seconds) of audio to
a web browser over HTTP. Descriptions of integration on
the cloud-end, how an end point can be created, and how
a cloud synthesis network can be interacted with are also
provided.

Thus the contributions of this paper are:

• A proposal to use cloud-computing to compose large
instruments;

• A description and implementation of free-open-source
streaming software that allows one to listen to instru-
ments situated in the cloud;

• An addressing of the software, network, and latency
aspects with existing portable open-source software.

Proceedings of the International Conference on New Interfaces for Musical Expression

277



Figure 1: Screenshot of the granular synthesis interface.

Figure 2: Example of managing cloud virtual machines.

2. PREVIOUS WORK
This section discusses some of the previous work relevant
to networked audio, networked computer music, networking
latency, streaming technology and networked orchestras.

Oh et al. [9] in“Audience-Participation Techniques Based
on Social Mobile Computing” show that smartphones are
convenient for both audience participation and computer
music performance. While Jordà [8] discusses methods used
to play or interact with multi-user instruments and how
instruments differ regarding shared collective control.

TweetDreams, by Dahl et al. [6], rely on Twitter’s cloud
to allow an audiences to interact with a musical instrument
via a web interface (Twitter). The audience participates by
tweeting at the performer’s Twitter account.

From an infrastructural point of view, Jesse Allison et
al. [1, 2] describe using web frameworks such as Ruby on
Rails to distribute the performance among many users. They
rely on HTML5 technologies to make interactive and musi-
cal web applications. Allison argues that adhering to HTML5
standards allows for client-side instrument UIs to be dis-
tributed without having to address many portability issues.

massMobile by Weitzner et al. [13] is a system meant to
allow smartphones to interact with and Max/MSP via web
standards (HTML5), over a variety of wireless networks.
Their configuration includes a persistent internet accessible
sound server running Max/MSP on a single machine.

Laptop orchestras [12, 11] are quite relevant to this work
because the cloud can augment laptop orchestras. Further-
more technologies such as jack, that enable laptop orches-
tras can be used to aide the composition of cloud instru-
ments. Barbosa et al. [3] show that networked computer
music has been around since the 1970s and many of the
techniques used in 2003 are still relevant to this day.

3. CLOUD SOUND CARD
One problem with virtual computers or virtual machines
(VMs) that exist in the cloud is that they usually lack actual
sound cards. Furthermore the lack of locality in the cloud
dictates that even if the virtual computers had soundcards
one would have to transmit the audio signals over a wide
area network anyways.
jack [5] or similar sound daemons can be used in place of

actual sound devices. A jack network allows applications to
share synchronized audio and midi streams with each other.
NetJack enables sending jack data over a UDP network.

Thus this strategy is to deploy NetJack on a collection
of virtual machines in a cloud, then export and stream the
final mixed audio back to the performer/listener without
using jack. This means that the listener does not need to
act as the master jack server, as this is heavy and onerous
requirement that would exclude many mobile devices.

One avenue for portable audio streaming is web audio [10].
A limitation that faces web audio is that browsers and
other web audio clients are often tuned for smooth heav-
ily buffered playback. They will often have large buffers
that fill up with audio data, of multiple seconds to allow
for jitter in the timing of received packets. This avoids the
problem of packets being late and audio cutting out due to
lack of data, but induces seconds of latency. This latency is
worsened by the large buffers of the encoders that need data
ready for computationally intensive encoding and stream-
ing. The sum of all these buffers produces heavy latency.

By reinventing the streaming wheel and leveraging web-
sockets [7] to stream audio packets one can keep the latency
to the end listener/performer down below 1 second. This is
far better than using heavily buffered audio infrastructure
behind the HTML5 audio tag. Furthermore websockets are
part of the HTTP spec and are allowed through firewalls,
solving the network configuration problem as well. By con-
necting to a websocket serving HTTP server the user creates
the connection that is routable by the firewalls and NATs
found on many networks.

3.1 Backend Implementation
The Cloud Sound Card is a web-application that acts as a
jack playback sink, whereby any jack source that is con-
nected to it will be linearly mixed into this sink. This sink
is then read by the web-application for each small buffer
of audio (usually 256 samples or more). For each listener
every new audio buffer is copied to its queue and eventually
sent to the listener over the TCP-based HTTP websocket
connection that was established.

Websockets [7] are a bidirectional socket/pipe abstraction
built on top of HTTP and TCP. They enable both sides to
send messages back and forth over HTTP. Thus a client
webbrowser will subscribe to the streaming websocket.

3.2 Cloud Sound Card Client
The cloud sound card is a JavaScript program run in a
webbrowser that receives and plays audio, often raw au-
dio, streamed over a websocket to the client. The client
uses the web-browser’s webaudio system and a webaudio
ScriptProcessor node to fill the audio buffer being played
on the soundcard. HTML5/JavaScript’s ScriptProcessor

lets you fill the audio buffer with arbitrary audio data.
Most modern web-browsers such as Firefox, Chromium,

and Safari support webaudio streaming 1. Furthermore any
Android device with a newer Chromium browser or a Fire-
fox Fennec mobile browser can listen to webaudio already.
This cloud sound card has been tested and functioned well
on a Galaxy Nexus smartphone running Mozilla Firefox
Fennec also called Firefox Beta.

The client software negotiates with the web application,
subscribes to a websocket, and then is streamed audio in
buffer sized chunks that it it uses to fill the buffer of the
ScriptProcessor. As long as the websocket can fill the
buffer, the audio is played clearly and uninterrupted. If

1Is your browser supported? http://caniuse.com/
audio-api

Proceedings of the International Conference on New Interfaces for Musical Expression

278



Interactive
HTML5/Javascript

Instrument
User Interface

The Cloud
Frontend UI
Application 
Webserver

Slave Granular
Synthesis

Instrument

Master
Mixer

PA System
/Speakers...

Bidirectional Communication

Unidirectional Communication

 Name Software System/Component

... 0 or more components

Slave Granular
Synthesis

Instrument

J
A
C
K

O
S
C

OSC

O
S
C

JACK

J
A
C
K

HTTP

HTTP

OSC

HTTP

HTML5/Javascript
In Browser

Cloud Sound
Card

Audio

Figure 3: Architecture of an example Cloud Music Instrument and Cloud Sound Card Interface

there are networking issues, such as a poor wifi signal, there
can be drop outs.

Thus the cloud sound card relies on a jack-client web-
server and a websocket HTML5 JavaScript client. This
HTML client is quite portable and in future years will be-
come more portable. Latency is reduced by using the Script-
Processor, thus the buffer size is controlled, rather than un-
controlled buffer sizes used in the web browser.

4. A CLOUD-BASED COMPUTER MUSIC
INSTRUMENT

The demo cloud instrument 2 was a 15 computer cluster,
with one master node that acted as the cloud sound card
server and the web UI control server (see Figure 2). It had
1 external IP and 1 cloud IP. Clients could connect to the
external IP, while the audio generator slaves would connect
via the cloud IP. The architecture is depicted in figure 3.

The instrument was a time-stretching granular synthesis
instrument that was creating grains from time stretching a
recording Goldberg Variations, Aria Da Capo 3 Each granu-
lar synthesis instrument would be initialized with a different
density of grains, different frequency of grain playback, dif-
ferent distribution of frequencies, and different grain lengths
and phases. These parameters were controllable via Open
Sound Control (OSC). But this would mean there would be
14 computers all listening to similar OSC commands on dif-
ferent machines. Thus any parameter in the network could
be executed via a UDP OSC command. But the UDP rout-
ing was not exposed to the internet.

Those outside the cloud could control the instrument via
a simple web interface, see Figure 1, that used XHTTP re-
quests to send updated OSC messages to the machines in
the cloud. This is equivalent to the passthru instruments
discussed by Allison et al. [2] in their Nexus work. The
XHTTP request would be JSon formatted to look some-
thing like a OSC packet. The JSon packet specified, a
host, a path, and arguments and types. This JSon packet
would be received by the OSC proxy web-application which
would then interpret the packet and determine if the spec-
ified hosts and specified paths were allowed to be relayed
to other hosts. Once the packet was approved a real OSC
packet was formed and sent to the appropriate host. The
latency of the web interface thus varied because the latency
between the web UI and the cloud granular synthesis slaves
succumbed to a lot of jitter. Nonetheless this simple web-
interface allowed smartphones and desktop web-browsers to
control parameters on multiple machines and still hear it.

2Download the source code of the cloud slave granular syn-
thesizer as well as it’s Web UI front end http://ur1.ca/gl788
3Public Domain rendition at: http://ur1.ca/gl78i

5. DISCUSSION
5.1 Experience with the Cloud Sound Card
The cloud sound card 4 worked surprisingly well for such
a simple setup. Audio generated by flipping an audio back
and forth in mplayer suffered latencies far below 1 second,
200ms or less, when operating on the streaming web-server.

14 different slave audio generator clients would stream
audio via netJack from a CSound based granular synthe-
sizer time-stretcher instrument. The audio streaming over
the web-client was arguably the lowest bandwidth connec-
tion for the sound server. The audio was uninterrupted
and worked both on a desktop computer connected to ca-
ble internet, on a laptop connected to university wifi, on a
Galaxy Nexus phone on university wifi, and on a Galaxy
Nexus phone on cable internet wifi.

For some of the interactive aspects latency was noticeable
due to all of the routing required, but it was often under
control and interactive enough, but the latency would be
too high for trained musicians.

An audio ping script was built that records the start
time and sends a ping-request to the granular synthesizer
to play a loud and brief high frequency sine-wave. When
the ScriptProcessor played the buffer that contained the
tone it would register that the ping was received and calcu-
late the latency. The request path was an XHTTP request
to an OSC relay Web App, then a UDP OSC message to
slave VM running CSound operating a 100Hz control-rate,
then CSound produces the ping noise, communicates this
audio over NetJack back to the streamer web app, which
then sends the audio over websocket back to the client’s
web browser and soundcard.

On the same machine a median of 78ms of latency was
achieved. a median latency of 124ms was measured using
the Cybera cloud, and a web-client on the University of
Alberta network. A median latency of 165ms was measured
using a consumer cable modem connection to the Cybera
cloud. These latencies are far less than 300ms or 1 second,
low enough for many kinds of interactive video-games, but
too high for low latency interaction.

The bandwidth requirements depend on the configura-
tion. For 1 channel of 44.1khz audio, represented by floating
point numbers, one needs a minimum bandwidth capacity
of of 1.5 MBit/s or 190kB/s. This includes packet headers
for Ethernet, IP, TCP and HTTP Websockets. The same
bandwidth would be needed for 16bit 2 channel audio.

Good performance (latency, audio quality) was achieved
with buffer sizes of 256, 512, 1024, 2048, and 4096 samples.
256 floating point samples is less than the size of common

4Download the source code to the cloud sound card:
http://ur1.ca/gl77s

Proceedings of the International Conference on New Interfaces for Musical Expression

279



DSL MTUs (˜1468), meaning that if the buffer is set to 256
samples then the TCP packets sent will not be fragmented.
The problem with a small buffer is that there are often more
packets for less data.Large buffers can accommodate more
noise and jitter in the transmission of data. But 256 samples
is only 6ms of audio thus the cost of skipping it is very low.
A buffer size of 4096 samples incurs approximately 100ms of
latency, on top of all the other latencies incurred. Recom-
mendation: use 256 samples to avoid packet fragmentation.

5.2 Experience with an Example Cloud In-
strument

One problem with the cloud is the bandwidth and the rout-
ing of packets internally within the cloud. The routing of
packets can affect how much data can be sent at one time to
a particular host as well as the latency. The 15 node cloud
instrument’s master node was receiving about between 21
to 76Mbit/s of audio when 14 machines were streaming au-
dio to it via netJack. That bandwidth from multiple hosts
can be very costly in terms of network infrastructure and
can cause packet drops and jittering.

One difficulty was that many applications expected a ter-
minal or did not run well without a terminal. Running both
jackd daemon and CSound processes within GNU Screen
terminal emulator solved the need for a terminal. Orches-
trating processes on many computers requires automation.

5.3 Recommendations
If one is building a cloud music instrument consider:

Make master and slave images. Images are stored copies
of a VM, with an image a user can bring up new machines
that are configured in a manner similar to other machines.
When building many slaves it is preferable to build 1 slave
image and then provision as many slave instances (VMs) as
are needed. This saves configuration effort per each slave.

The configuration of the sound network: should you choose
a star configuration, or a tree? After testing your cloud
computers for connectivity one should be able to determine
the maximum number or the acceptable of audio streams
that a host can send or receive. If the number of usable VMs
is less than the maximum number of streams then perhaps
a star configuration will work. A tree configuration incurs
more latency, as every time one accesses the network the
latency increases as there are more marshaling costs and
transmission. But in terms of scalability a tree formation,
plus good quality network switches, can balance the stress
on a network caused by streaming.

Computer problems multiply in the cloud. Another prob-
lem is that sometimes VMs crash or become unusable, one
must adapt to an ever changing environment where every
machine might not be available, or the machine is on a
slow host and is lagging behind the other machines. Some
distributed computing systems like Hadoop (http://hadoop.
apache.org/) address this by allocating some redundant work-
ers to duplicate some computations in the hopes of finishing
or serving earlier. The same can said for the cloud instru-
ments. Some redundancy might be worthwhile in case 1
VMs lags and can be replaced by another existing VM.

The cloud tends to be better at computation than latency.
Consider building instruments that are computationally heavy
but with soft real-time constraints. For instance video anal-
ysis, image analysis, or motion tracking could be outsourced
to cloud machinery and then statistics and events generated
could be aggregated into a larger instrument.

The bandwidth and latency are best within a single ma-
chine. Larger, more powerful cloud VMs might be a better
than many cloud VMs. Computer music is heavily lim-
ited by latency thus taking advantage of immediate locality

within a VM is far preferable to leaving the VM.

6. CONCLUSIONS AND FUTURE WORK
In conclusion, this work proposes, implements, describs and
shares a method of listening to the output of cloud in-
struments, enabling performers to avoid carrying excessive
equipment to a venue, and saving on setup time.

The various challenges that face computer musicians when
using the cloud were discussed with potential solutions mapped
out. An example implementation of a many-core cloud in-
strument was implemented and demonstrated.

Since Websockets are bidirectional it would not be diffi-
cult to stream audio back to the cloud from the performer’s
device. Bidirectional input would enable non-trivial col-
laborations without much infrastructure to set up. Cloud
computing could better leveraged by breaking down synthe-
sis computations into low latency Hadoop-like Map Reduce
computer music networks.

7. ACKNOWLEDGMENTS
Thanks to Cybera (http://cybera.ca) for their support of
this project with cloud computing resources. Thanks to
Scott Smallwood for his support.

8. REFERENCES
[1] J. Allison. Distributed performance systems using

html5 and rails. In Proc. of the 26th Conf. of the
Society for Electro-Acoustic Music, 2011.

[2] J. Allison, Y. Oh, and B. Taylor. Nexus:
Collaborative performance for the masses, handling
instrument interface distribution through the web.

[3] Á. Barbosa. Displaced soundscapes: A survey of
network systems for music and sonic art creation.
Leonardo Music Journal, 13:53–59, 2003.

[4] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and
I. Brandic. Cloud computing and emerging it
platforms: Vision, hype, and reality for delivering
computing as the 5th utility. Future Generation
computer systems, 25(6):599–616, 2009.

[5] A. Carôt, T. Hohn, and C. Werner. Netjack–remote
music collaboration with electronic sequencers on the
internet. In Proceedings of the Linux Audio
Conference, 2009.

[6] L. Dahl, J. Herrera, and C. Wilkerson. Tweetdreams:
Making music with the audience and the world using
real-time twitter data. In International Conference on
New Interfaces For Musical Expression, 2011.

[7] I. Fette and A. Melnikov. The WebSocket Protocol.
RFC 6455 (Proposed Standard), Dec. 2011.

[8] S. Jordà. Multi-user Instruments: Models, Examples
and Promises. In NIME’05, pages 23–26, 2005.

[9] J. Oh and G. Wang. Audience-participation
techniques based on social mobile computing. In
Proceedings of the International Computer Music
Conference 2011 (ICMC 2011), 2011.

[10] C. Rorgers and W3C. Web Audio API.
https://dvcs.w3.org/hg/audio/raw-file/tip/

webaudio/specification.html, 2012.

[11] S. Smallwood, D. Trueman, P. R. Cook, and
G. Wang. Composing for laptop orchestra. Computer
Music Journal, 32(1):9–25, 2008.

[12] D. Trueman. Why a laptop orchestra? Organised
Sound, 12(02):171–179, 2007.

[13] N. Weitzner, J. Freeman, S. Garrett, and Y.-L. Chen.
massMobile - an Audience Participation Framework.
In NIME’12, Ann Arbor, Michigan, May 21-23 2012.

Proceedings of the International Conference on New Interfaces for Musical Expression

280




