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Abstract

Power consumption is becoming more and more important with the increased popularity of smart-phones,
tablets and laptops. The threat of reducing a customer’s battery-life now hangs over the software developer who
asks, “will this next change be the one that causes my software to drain a customer’s battery?” One solution is to
detect power consumption regressions by measuring the power usage of tests, but this is time-consuming and often
noisy. An alternative is to rely on software metrics that allow us to estimate the impact that a change might have on
power consumption thus relieving the developer from expensive testing. This paper presents a general methodology
for investigating the impact of software change on power consumption, we relate power consumption to software
changes, and then investigate the impact of static OO software metrics on power consumption. We demonstrated
that software change can effect power consumption using the Firefox web-browser and the Azureus/Vuze BitTorrent
client. We found evidence of a potential relationship between some software metrics and power consumption. In
conclusion, we explored the effect of software change on power consumption on two projects; and we provide an
initial investigation on the impact of software metrics on power consumption.
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I. INTRODUCTION

Change can be scary, but software often needs to change. With change comes new opportunities and
new dangers. Given a mobile context, such as software on a smart phone or laptop, new dangers may
present themselves as power-consumption regressions. A change to the power consumption profile of an
application can have a significant impact on the end-users’ ability to use and access their mobile device.

Power consumption in a mobile setting limits the length of time that a device can operate between
charges. When there is no power left, the user cannot use their device and is often left stranded without
the aide of their mobile device, even in an emergency.

In this paper we will investigate the effect of software evolution on power consumption. Ask yourself,
when a developer changes an application, will that application consume more or less power? Will new
events and notifications quickly use up the battery? Will improving one quality, like responsiveness,
negatively affect power consumption? In many of these cases the developer will not know until they
test their application, or release it to unsuspecting users. Testing an application for change in power
consumption is time consuming, one has to design a regression test and run it multiple times for reliable
readings. Furthermore as these tests are running, the system needs to be monitored in terms of power
consumption or resource usage. Thus testing for power consumption is expensive and time consuming [1].

Our long term goal is to save developers time, and help alert them before they make a software change
that negatively affects power consumption. In this paper we take an initial step to see if changes in OO
metrics between software versions could be related to software power consumption.

This paper works towards the idea of Green Mining [2], an attempt to measure and model how software
maintenance impacts a system’s power usage. Green Mining’s goal is to help software engineers reduce
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the power consumption of their own software by estimating the impact of software change on power
consumption. Concretely, we can give recommendations based on past evidence extracted by looking at
each change in a version control system (VCS) and dynamically measure its effect on power consumption.
Green Mining mixes the non-functional requirement of software power consumption with mining software
repositories (MSR) research. Green mining is an attempt to leverage historical information extracted from
the corpus of publicly available software to model software power consumption.

One might ask, why bother measuring power when you can measure CPU utilization? Most research [3]–
[5] about software power consumption has focused on the CPU, but other resources such as memory, disk
I/O [6], heat, and network I/O all impact software power consumption [1]. In a mobile setting, such
as smart-phones and laptops, disk and network I/O can severely affect power consumption. Furthermore,
mobile vendors such as Apple, Microsoft, Intel, and IBM, have demonstrated an interest in software power
consumption by providing power-management documentation and tools [7]–[11].

Our research questions include:
• RQ1: What are the effects of a performance oriented branch on the power consumption of Firefox?
• RQ2: What software metrics are relevant to power consumption?
In this paper we will address some of the initial steps towards green mining: measuring the power

consumption of multiple versions and multiple contiguous commits/revisions (commits in version control)
of a software system and leveraging that information to investigate the relationship between software
change and power consumption. Small gains in power consumption can have a large effect when multiplied
across multiple users, systems, or hours.

This paper’s contributions include:
• A clearly defined general methodology for measuring the power consumption of snapshots and

revisions;
• A comparison of the power consumption of Firefox branches;
• A revision-by-revision analysis of Azureus/Vuze power consumption;
• An attempt to relate power consumption and software metrics.
This paper differs significantly from our ICSE NIER paper, Green Mining: Investigating Power Con-

sumption Across Versions [2], which served as a call to arms for Green Mining. We do share some Firefox
data and tests. In this paper we evaluate different branches of Firefox and investigate per revision power-
consumption of the Vuze BitTorrent client. The previous work [2] did not analyze source code, or relate
software metrics to power consumption.

II. PREVIOUS WORK

Throughout this paper we will discuss power consumption in terms of watts. Watts are a SI unit of
energy conversion, or power, equal to 1 Joule per second, named after James Watt. A useful reference
point is that a 40W incandescent light-bulb consumes 40W when it is operating. To talk about cumulative
consumption, we use a unit of watts over time, such as a watt-hour: a 40W bulb operating for 1 hour
takes 40 watt-hours. We report mean-watts rather than watt-hours because per study each test takes an
equal amount of time.

Industrial interest in software power consumption is apparent [1], [7]–[10]. Companies who produce mo-
bile devices and mobile software have expressed their interest in terms of research funding, documentation,
and tools. Google has funded Power Tutor [1], an Android power monitor. Microsoft provides Windows
Phone documentation and research [7], [9] about how to reduce power consumption on the Windows
Phone. Apple provides advice for improving iOS battery performance of applications [8]. Intel [10] has
contributed to Linux in terms of PowerTop, a power-oriented version of UNIX top. IBM publishes
documentation and sells tools that help reduce server room power consumption [11]. Industrial interest
in software-based power consumption is evident as many of these companies have formed and joined the
GreenIT [12] group.
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Measurement: Power consumption must be measured and related to the software that induces this
consumption. Gurumurthi et al. [13] produced a machine simulator called SoftWatt meant to simulate a
power consuming device. This kind of virtualization is valuable as hardware instrumentation is expensive.
Amsel et al. [4] have produced tools that simulate a real system’s power usage, and benchmark individual
applications’ power usage. Gupta et al. [9] describe a method of measuring the power consumption of
applications running on Windows Phone 7.

Tiwari et al. [3] modeled the power consumption of individual CPU instructions and were able to model
power consumption based on traces of CPU instructions.

As power consumption is not just the CPU’s fault, Lattanzi et al. [14] investigated the power consump-
tion of WiFi adaptors and was able to produce an accurate model of WiFi power usage from a synthetic
benchmark. Greenwalt [6] measured and modelled the power consumption attributes of hard-drives (HD),
especially the HD seek times and power management timeouts.

In the mobile space PowerTutor [1] is an Android power monitor that augments ACPI power readings
with machine learning to improve accuracy. Dong et al. [1] confirm that measuring power usage is
intensive.

Kocher et al. [15] used power measurement to execute side-channel attacks on crypto-system imple-
mentations in order to expose key-bits. Other uses of measurement is to minimize power consumption.
Optimization: One goal of measuring power consumption is to optimize systems for reduced power
consumption. Li et al. [16] applied the idea of load balancing to server-room heating and cooling. Fei et
al. [5] used context-aware source code transformations and achieved power consumption reductions of up
to 23% for their software. Selby [17] investigated methods of using compiler optimization to save power
by reducing the load on the CPU by reducing branch prediction and staying in cache to avoid memory
bus access. But power usage research has not leveraged the big-data corpus-based approaches used in
MSR research.
Mining Software Repositories: Arguably any MSR work that is relevant to performance via traces
is relevant to this work. For instance Shang et al. [18] have investigated performance over versions
of software, in particular Hadoop. They evaluated the multiple versions against the stability of the log
messages, while not quite a performance measure it required running multiple versions of the system
to collect this date. To date there has not been much work, on combining MSR techniques with power
performance, other than Gupta’s [9] work on mining Windows Phone 7 power consumption traces.
Summary: We have demonstrated that there is much industrial and academic interest in power consump-
tion but not a lot of focus on the effect of software change and software evolution on power consumption.
Thus Green mining demonstrates novelty by combining MSR research and power consumption.

III. METHODOLOGY

In this section we present an abstract methodology for measuring and correlating power consumption
of software snapshots and commits. We will also present the concrete methodology we used in the case
studies to follow.

A. Green Mining Abstract Methodology
Within this section we will describe how to setup a green mining style power measurement experiment.

This methodology is primary for the measurement and extraction of power consumption information
relevant to software change. An overview of the general methodology is as follows:

• Choose a software product to test and what context it should be tested in.
• Decide on the level of instrumentation and the different kinds of data recorded, including power

measurements.
• Choose a set of versions, snapshots or revisions, of a software product to test.
• Develop a test case for the software that can be run on the selected snapshots and revisions of the

software.
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Fig. 1. This is a graph of the distributions of mean wattage (power consumption) of different versions of Firefox. The green-blue area is
the range between the minimum and maximum mean wattage for that version. The red line is the mean of mean wattages and the box-plots
depict the distribution of mean wattage per test per Firefox version. Note this plot depicts over 509 builds of Firefox 3.6 from alpha to
stable versions. The dotted line with a negative slope is a line of best fit on the means; its slope indicates a decrease in power consumption
across versions. The ranges for the earlier versions are smaller because we tested less instances of each of the earlier versions. This diagram
depicts 2100 test runs. This figure shares data with our previous work that promoted and motivated Green Mining [2].
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Fig. 2. Firefox Electrolysis Tests showing the distribution of mean wattage of different nightly builds and versions of Firefox Electrolysis.
Following the same legend as Figure 1, this diagram shows a slow increase in power consumption but the mean wattages are less than the
Firefox 3.6 main branch in Figure 1. This diagrams depicts 1500 test runs.
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Fig. 3. Comparison of distribution of Firefox 3.6 mean watts and Firefox Electrolysis mean watts. Note that Firefox 3.6’s mean is higher
but the distribution is tighter.

• Configure the testbed system to reduce background noise from other processes.
• For every chosen version:

– Run the test within the testbed and record the instrumented data.
– Compile and store the recorded data.
– Clean up the test and the testbed.

• Compile and Analyze the results
Choosing a product and a context: The first step is to choose a product and the context in which the
product is going to be tested. It is important to consider the purpose of the test: is a particular feature
being tested? Is new code being tested? Is the test meant to represent the average user using a product?
Decide on measurement and instrumentation: to decide on instrumentation one has to decide what
they want to measure. If the test is going to be deployed on systems without power monitoring, does
CPU, Disk I/O and Memory use need to be recorded in order to build models and make a proxy power
consumption? On some systems, such as VMs, power cannot always be measured directly measured so
other measures might have to serve as a proxy. One should consider the overhead of measurement in
terms of CPU, I/O, and events and if any of this affects the power consumption of the system. Too much
overhead results in a confounding observer effect which can skew results. Some aspects of a system can
be measured without affecting the run-time system. For instance recording power consumption with a
separate computer avoids the overhead of recording power use on the same machine.
Choose a set of versions: One must choose a range of versions of the software, snapshots or revi-
sions/commits, to iterate over and test. If one wants to tease out the effects of software evolution one has
to monitor the power consumption response of different versions of the software. Snapshots are either
source-code or compiled releases of the software. Revisions or commits are the version control’s snapshot
of the system at a specific time or revision. Furthermore if compilation is needed, candidates chosen must
be compiled. This kind of testing requires an executable binary, thus one has to account for building these
VCS snapshots into their decision to use these snapshots and revisions.

If a version control system is used, one will have to walk through commits and determine candidate
commits. For instance in the case studies we tried to compile every revision in the VCS with varying
success.
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measurement was taken at a certain wattage at a certain second. This plot is effectively a trace of how thousands of tests ran in terms of
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Fig. 5. Vuze Init, Verify and Idle test. This test shows the distribution of tests run on 45 revisions of Vuze, totaling 900 tests. The line
of best fit has a weak negative slope across the versions. The test consists of Vuze starting up, checking file integrity, seeding the file and
idling.

Developing a test case: Based on the context chosen at the beginning, a representative test case must
be built that will exercise the necessary functionality of the target product. A test case might simulate
user input, or focus on specific tasks of a system such as initialization. The test case is expected to
be independent and clean up after itself. One test case should not affect the next. This can be difficult
to achieve and might require monitoring a test case before one can be confident it has been addressed.
Furthermore the test cases must deal with the evolution of the software, the same feature might be accessed
in different ways depending on the version of the software. Tests must handle situations such as software
that is run for the first time and prompts for input to help initialize the software.
Configure the testbed: the testbed will often include a full modern operating system. These modern
operating systems have numerous services that execute automatically. These kinds of services add noise
to measurements and should be disabled. Such interruptions include: automatic updating, disk defrag-
mentation, virus scanning, CRON jobs, automatic updates, disk indexing, document indexing, RSS feed
updates, twitter feeds, etc. Furthermore the system should be isolated in terms of other users and services
that the testbed system provides. In terms of user interfaces it is useful to turn off screen blanking and
screen savers. Window manager choice can matter as well, if a window manager is used that makes window
placement predictable then tests are easier to develop, without UI predictability tests need to include more
logic to handle UI exceptions. If the configuration and setup of the testbed can be automated then the
results from these tests are far more reproducible.
Per each version: the version of the software should be unpacked and the tests run against this version,
multiple times. Before the test starts the testbed must initiate all external instrumentation, such as memory,
CPU, and disk I/O monitoring tools. Once the system is ready the test is initiated. Once the test is complete
the information from the instrumentation, the power monitoring device, the external instrumentation and
the logs are all recorded and packed up. This bundle of compiled information is then locally or remotely
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stored. Once all necessary information is extracted from the remains of the test-case, the test-case or
testbed is meant to clean up after itself as to allow another test-case to run independently. Note for
reliable results these tests should be run multiple times as it is unlikely that one has full control over
every tiny minutia in the system, the testbed, and the tests. Multiple runs ensure reliability, but one should
avoid multiple consecutive runs for fear of disk caching (restarting the system can alleviate this issue).
When storing the results of each test one should record the necessary metadata which could include the
machine-name, testbed identity, the current configuration, start and end time, the power monitor trace
itself and summary statistics.
Compile and Analyze the results: once the tests are executed enough times one can analyze the results.
It is useful to summarize each run by the number of watts consumed or mean watts.

B. Green Mining Concrete Methodology
In this section we instantiate the methodology of the previous section and we describe the concrete

aspects of tests. We demonstrate the applicability of the previous methodology to our case studies.
Choosing a product and a context: in this paper we chose 2 products. The first product is Firefox,
a popular C++ implemented consumer-oriented open-source web-browser maintained by the Mozilla
foundation. The second product is Azureus, now known as Vuze, a popular Java-based Peer-to-Peer
(P2P) BitTorrent client. Our Firefox testing context simulates the browsing behaviour of a mobile-user,
and slightly exercises the animation and Javascript features of Firefox in the process. For Vuze we test 2
contexts: the first context tests the start-up cost of Vuze before it seeds a 2GB file, and then the cost of
an idle Vuze seeding; the second context tests the cost of Vuze downloading a file from a seeder.
Decide on measurement and instrumentation: we decided to measure the power consumption of the
system using an external AC power monitor called the Watts Up? Pro, a hardware device that measures
wall socket power consumption (watts, kWh, amps, power-factor, volts, etc.), and reports power measures
per second. We wanted to mine for information that would allow us to model power consumption and
avoid hardware instrumentation, thus we used SAR 1 to record system activity information (CPU, Disk,
Memory, Network, etc.). We combine both of these measures and synchronize them with timestamps.
Choose a set of versions: For Firefox we relied on nightly snapshots for the 2009–2010 nightly builds of
Firefox with version ranging from 2.0 to 3.6, focusing mostly on 3.6 compilations for the main Mozilla
branch and the Electrolysis branch for 3.6. Because the Firefox versions we had were binary snapshots
we could immediately run them. For Vuze, we relied on 45 subversion revisions starting from revision
26730 on September 14, 2011 to revision 26801 on December 15, 2011 (3 months); between those 2
revisions we successfully compiled 45 versions.
Developing a test case: Within each case study’s section we will explain each test case in more detail.
For the Firefox test case we opened 4 different webpages and randomly scrolled through them as if we
were a mobile user browsing the web and reading the webpages they downloaded. We had two Vuze tests,
the first test checks Vuze’s start-up, idling and file integrity check; the second test measures the power
consumption of downloading a 2GB file from a seeder.
Configure the testbed: In all test cases we had the same testbed. The hardware we used in the case study
included an IBM Lenovo X31 Thinkpad laptop running Ubuntu 11.04, with its battery removed, plugged
into a Watts Up? Pro device for power monitoring. We did not use the battery because we did not have
a method of recharging the battery automatically. We made a script that put the laptop into an aggressive
power-saving mode that would simulate mobile use. We turned off screen-savers and screen-blankers for
consistency. We turned off automatic software updates and the checking for such updates, we also disabled
disk indexers. We disabled spurious cronjobs. We logged into X11 as the greenminer user, using the
XMonad window manager, which was set to full-screen each window that popped up. The screen was
left on during the tests.

1SAR and Sysstat http://pagesperso-orange.fr/sebastien.godard/
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Per each version: for all versions of Firefox we unpacked them and ran tests on them multiple times,
we describe these details in the Firefox case study Section IV-A. For the versions of Vuze we compiled,
we unpacked and ran the tests multiple times on the executable, see Section IV-B. Each test run would
upload the monitoring data to another server as to not impact the disk space of the testbed machine.
Compile and Analyze the Results: Our case studies contain the analysis of the results in terms of
performance, power consumption and correlation with software metrics. In the end we had thousands of
power traces and we had to aggregate this data meaningfully.

We seek to produce a huge corpus of software change correlated with power consumption behaviour
by following this Green Mining vision and replicating this methodology over a large corpus of available
software, version per version, revision per revision. The more measurements we have the better change
that we can estimate the power consumption of software changes even without compilation or testing. In
the next section we discuss our case studies which use this methodology.

IV. CASE STUDY

Our case studies demonstrate an investigation of Firefox 3.6 and Vuze. The Firefox case study focuses
on the power consumption of nightly compiled versions of Firefox, each run and tested many times. The
Vuze case study investigates the fine grained version control commits by checking out a range of revisions
or commits, compiling them, testing them, and then correlating their power consumption with software
metrics. These case studies took more than 30 days to run.

A. Firefox 3.6
Our tests for Firefox were meant to simulate a mobile user browsing multiple webpages, and also to

catch the cost of Firefox start-ups. For each page viewed we killed and restarted Firefox. Each page
that we used was remotely hosted. For each page Firefox would load the page and then our UI driver
would simulate a user scrolling through the webpage. To drive the UI we used X11::GUITest, a GUI
testing framework. In order to generate the test of the user scrolling, we used X11::GUITest to record our
own browsing session of reading and scrolling through a webpage. The intent was to produce a realistic
browsing session with navigation keys such as up, down, page-up, page-down and mouse motions to catch
messages that pop-up when we mouse over them.

The 4 different web-pages consisted of 2 Wikipedia pages, a mirror of the main-page and a page about
the “Battle of Vukovar”, and 2 NYAN-Cat pages (http://nyan.cat/) mirrored in different ways (but hosted
remotely by us). The NYAN-Cat pages include GIF animations and client side Javascript animation.
Testing all 4 pages took about 6 minutes.

While the Firefox tests ran we also had to check to see if the browser was in focus. Sometimes the
browser would prompt to see if we wanted Firefox to be the default browser or to restore an older session,
thus our GUI driver had to detect this and avoid this situation.

The Firefox binaries that we tested were “nightly builds” provided by Mozilla on their FTP site. Thus
each binary tested was the accumulation of revisions for that day on that branch (mozilla-1.9.2 for Firefox
3.6). We did not evaluate RQ2 for Firefox because we used “nightly builds” and did not have a similar
metric suite for C++ code.

Figure 1 displays the results of 2131 runs of 43 different distinct versions of Firefox from version
2.0.0.21pre to version 3.6.14pre. Each version is a box-plot consisting of a set of nightly builds of
Firefox, each run 3 or more times.

Figure 1 shows that Firefox 3.6 is relatively stable in terms of power consumption, but it can fluctuate
between versions and measurements. The negative slope of the fitted line shows that there is a decrease
in power consumption over time. For the 3.6 versions of Firefox it was relatively flat and stable. The
difference in means between pre-3.6 Firefox versions and Firefox 3.6 versions is about 0.56 watts (T-test
p-value of 0.012). Earlier versions of Firefox had higher mean power consumption, but also poorer general
performance.
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The first part of Figure 4 shows a density plot of the Firefox tests. Visible at the top of the figure are
four yellowish peaks, each indicate a Firefox start-up for a webpage, which are heavy in terms of disk
I/O, memory and CPU use. Most Firefox runs looked similar to other runs hence the high density. This
plot, Figure 4, effectively summarizes the power consumption over time of 2131 separate runs of Firefox
with our test. The last half of this plot shows elevated power consumption due to the GIF animation and
Javascript animation used in the NYAN Cat tests. One take away from this is that webpages that are
concerned about power usage should avoid Javascript with timed events and animations.

To summarize, Firefox was becoming more efficient over time and was consuming less power. Power
consumption was relatively stable during the Firefox 3.6, but was up to 0.5 watts less than prior versions.
This correlates with Firefox’s pressure to achieve similar performance to that of Webkit-based competitors
such as Chrome and Safari.

1) Firefox Electrolysis Branch: In parallel with mainline Firefox 3.6 development, a branch of Firefox
was created called Electrolysis 2. Electrolysis was an attempt to improve Firefox’s performance and
improve stability by allowing separate pages or tabs to exist as separate processes. Electrolysis also
included some Javascript optimizations to deal with the pressure of HTML5 JS performance demonstrated
by competing browsers at the time. One reason to test Electrolysis power consumption is to see if improved
Firefox UI performance leads to increased Firefox resource usage and more power consumption. For
example in an attempt to address UI fluidity and smoothness the Firefox developers could have added
even more events and timers in order to improve responsiveness, thus this new version could potentially
use more power.

We measured 1500 separate Firefox Electrolysis-branch tests (the same as the Firefox 3.6 tests) and
compared them to Firefox 3.6. Figure 2 shows the plot of Electrolysis versions of Firefox compiled as
nightlies. We can see that as Electrolysis was developed power consumption slowly increased. Yet when
we compare the mean of the Electrolysis tests to that of the Firefox tests we can see that Electrolysis
branch has reduced mean power consumption by about 0.27 Watts (T-test p-value of 0.023). We have
plotted the difference in means of Firefox 3.6 and Firefox Electrolysis tests in Figure 3, we can see that
electrolysis tests are clearly below most of Firefox 3.6’s tests.

In response to our first research question (RQ1) the performance oriented branch, Electrolysis, of Firefox
achieved a savings in power consumption (0.27W ). We can see that intent behind Electrolysis was slowly
being achieved, performance gains were happening and this was evident in reduced power consumption.
Small savings in power consumption for popular software such as Firefox can quickly multiply and result
in worldwide power savings.

B. Azureus/Vuze BitTorrent Case Study
The purpose of this case study is to investigate the relationship between the revision by revision change

of Vuze with respect to power consumption. Furthermore we want to investigate the effect of code metrics
on power consumption, thus we need coherent chunks of code to experiment with. Commits provide this
appropriate coherency. The value of these kinds of tests is they allow us to relate fine grained incremental
changes, the code of software revisions, to power consumption.

Vuze is a popular Java based open-source BitTorrent client. BitTorrent is a popular P2P file-sharing
protocol often blamed for much IP infringement, but it is also an effective method of distribution for large
legal files, such as the Ubuntu Linux CDs, as BitTorrent relies on the bandwidth of volunteers, who act as
seeders. Seeders provide pieces of the file being shared to leechers who download these parts. Leechers
can be seeders as well: BitTorrent tries to use game theory to make downloaders more willing to upload
parts of files to other leechers.

BitTorrent clients are interesting because they are long running background processes, on desktops
and mobile PCs, that share files by seeding and leeching torrents. Also, BitTorrent tries ensure random
redundancy of its network by seeding blocks of files in random order to leechers. This is meant to protect

2Further details can be seen here: https://wiki.mozilla.org/Electrolysis
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against the seeders disconnecting, and leaving the network of leechers without enough blocks to achieve
100% file block coverage. BitTorrent clients also use much cryptographic hashing for verifying that blocks
are received. Thus the profile of a BitTorrent client is interesting, it mixes intermittent heavy CPU use,
with intermittent heavy random I/O usage. Often a BitTorrent client has to verify file block integrity and
entire files have to be integrity checked.

Vuze was chosen because it is a popular product, often appearing in the Source Forge top 10; imple-
mented in Java, it often easy to compile, and runs on many machines. In this study we used multiple
machines to attempt to compile all versions of Vuze. We achieved approximately 25% to 50% compilation
coverage of the versions investigated. Of those we chose a 3 months worth of relatively recent commits
that compiled without much issue: 45 compilations of subversion revisions starting from revision 26730
on September 14, 2011 to revision 26801 on December 15, 2011 (3 months). To compile all of these
versions we made a flexible build script that tried to handle the different build methods (Apache Ant,
javac, Eclipse) used to compile Vuze.

We then developed two sets of tests to be described in the next sub-sections: the first test investigates
Vuze’s start-up, idling and file integrity check; the second test measures the power consumption of leeching
a 2GB file from a seeder. The same file was used in both tests, to avoid bandwidth savings due to
compression we generated a 2GB file made of random noise exhibiting an entropy of 8 bits per byte.

Since the tests were about BitTorrent we had a server act as both the tracker and a seeder. The server
and laptop communicated via a 100Mbit Ethernet cross-over cable.

For the Vuze tests we had a UI driver that pressed escape every second and closed Firefox if it started
up. This was necessary because the versions of Vuze we were running tended to prompt for much input
and would prompt to update the tested version of Vuze to a more recent version, or even try to open the
Vuze blog in Firefox. All of these issues confounded our ability to run Vuze and thus our UI driver had
to handle this. This can affect our testbed overhead since we create keyboard events every second.

For each test we evaluated the effort of OO software metrics on power consumption. Using the extended
CKJM metrics suite 3 we measured the metrics of each version of Vuze tested and investigated the effect of
various metrics on power consumption. Our primary tool is Spearman-rho rank based correlation. We chose
rank based correlation because we hope to provide recommendations to programmers later, thus knowing
that an increase in one measure leads to an increase in power consumption is quite valuable.Most of the
CKJM metrics did not rank-correlate with any level of statistical significance so we will not discuss them,
and those with enough statistical significance are unlikely to be significant after correcting for multiple
hypotheses.

1) Azureus/Vuze Init, Verify, and Idle Test: Our first test was a relatively simple idle seeding test.
BitTorrent clients upon start-up tend to verify the blocks in their downloaded files. In this test, the file
was already placed in the download folder, and thus Vuze would verify the integrity of the file. After the
integrity check, Vuze would register with the tracker (the computer serving the file as well) that it can
share the file it just verified. Then the Vuze client would open up ports and wait for any communication.
The Vuze client would also announce the availability of the file using the DHT function, but no one
randomly generated the same file so this did not cause a problem.

Based on this test setup we ran the test between 17 and 21 times (median 20) for each version of Vuze
that we compiled. Figure 5, shows a test with some variability but it is primarily centered around 22.6
watts per test. In terms of means, the mean power consumption has a tiny negative slope of −0.0015,
but this more pronounced in the medians with a negative slope of −0.0024, arguably this is still quite
flat, and the difference in means from the first and last versions is not statistically significantly different
(T-test p-value of 0.59). But the tests between earlier revisions and the revisions 26753 to 26783 (the start
of the 4700 release) tend to be statistically significantly different than revisions before and after (T-test
p-values less than 0.05). This behaviour becomes more prominent in the next test. An investigation of the
commit-log shows that many of the changes are UI hints, minor performance fixes and minor bug fixes.

3Extended CKJM Metrics: http://gromit.iiar.pwr.wroc.pl/p inf/ckjm/
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This test’s trace of wattage measurements is in the second sub-figure of Figure 4, it clearly shows the
busy work at the start where Vuze verified the file, and then the system goes relatively idle after the file
is verified. One interesting observation is that the power consumption of the Vuze tests is higher even
while idle than the Firefox tests.
Software Metrics and Power Consumption: to address RQ2 about software metrics for this test, change
in mean watts correlated with a change in mean DAM (ρ = −0.334, p = 0.0265) and a change in mean
MOA (ρ = 0.315, p = 0.037). Data access metric (DAM) is the ratio of private and protected attributes
versus the total number of attributes in a class. Measure of aggregation (MOA) is the measure of count of
fields in a class that derive from user provided classes. Total mean watts rank-correlated with polymorphic
measures such as depth in inheritance tree (DIT) (ρ = −0.37, p = 0.0125) and number of children (NOC)
(ρ = 0.369, p = 0.0138). These correlations are interesting and suggest that we need more data and more
study to further tease out relationships if they exist.

2) Azureus/Vuze Leech Test: The Vuze leech test is meant to simulate a user downloading a file with
BitTorrent from 1 primary seeder and no other leechers. In this test, the download directory is cleaned
out and the Vuze application starts up ready to download the 2GB file described by the torrent file. Upon
discovering there is no file yet, the client builds a sparse file on the file-system and then proceeds to contact
the tracker. The tracker tells the client about the seeders and leechers on that torrent and announces this
client’s new membership. Then the client contacts the lone seeder and starts requesting blocks from it.
We did not specify to Vuze to download blocks in order so it downloaded blocks in random order. This
test required more network I/O and disk writing I/O than the idle test.

In total for the 45 versions of Vuze, we ran each test 10 to 15 times with a median of 12 times. Figure
6 shows the power consumption distribution of each version of Vuze tested. Interesting features of this
test include the drop around revision 26753, that was visible in the previous test as well, shown in Figure
5. That power consumption is reduced in the dip, but it briefly spikes up again later. This test shows that
the power consumption of Vuze seemed to be going down over 3 months and maybe that had something
to do with fixes addressing resource use (memory leaks) and the mild performance improvements that
were discussed in the commit-log. The slope of this plot is −0.0023, similar to the slope of the idle test’s
median line.

The trace of wattage measurements is in the third sub-figure of Figure 4, it clearly shows the busy
work at the start where Vuze starts up, makes a new file, and then proceeds to download blocks of the
file. In the tests the file tends to be entirely downloaded by the 6th to 8th minute and then its integrity is
verified. But even when it is downloading, the power consumption remains high, it is has not settled down
and perhaps the system has not had time to idle yet. The CPU use of the test was about 46% on average
and there were many write transactions. It seems that both CPU and disk usage matter here. If we make
a linear model of just percent user CPU utilization, we achieve an R2 of 0.038 for this test with very
tiny p-values, by adding transactions per second we achieve a R2 value of 0.046, so some information is
being provided by the disk usage (AIC also drops slightly). This indicates that the linear model poorly
estimates power usage for this test, yet disk writes have an effect on power usage. This test probably
lacks enough variation to tease out interesting relationships based on performance metrics.
Software Metrics and Power Consumption: to address RQ2 for this test we used the same methodology
as the last test for investigating OO software metrics related to these results. In this test, no metric correlated
with statistical significance with the change in watts between versions. Mean Depth of Inheritance (DIT)
(ρ = −0.374, p = 0.011) and mean number of children (NOC) (ρ = −0.374, p = 0.011) both rank-
correlated with mean watts (and each other). Thus there was an interesting correlation between OO
structural size metrics and mean watts. In the future, we want to test more Vuze versions in order to
improve reliability.
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C. Threats to Validity
This work faces numerous threats to validity, but we hope that our experiences, which we have presented

in this paper, will allow others to carry out similar experiments with more reliability, accuracy and fewer
threats.

Construct validity is threatened by the assumptions regarding the granularity or meaning of revi-
sions/commits and snapshots. Fortunately measuring power consumption of a system is very concrete,
but we suffer from the observer effect of whether or not we are measuring the software that we are
testing is a concern.

Internal Validity: our OO metrics results are largely inconclusive because after p-value correction for
multiple hypotheses these p-values would be insignificant. The measurements from the power monitor are
not extremely accurate and wattage measurements are actually estimates, so there can be measurement
error. Measurement error is a concern on modern systems, as well as the overhead of the testbed, often
we are measuring its interaction as well.

External Validity: one obvious weakness of this approach is that the tests are very system specific.
Generalizability could be improved with more test diversity and more systems; for instance some software
has hardware specific optimizations. Unfortunately these tests are time consuming and difficult to setup,
thus data is limited. Future work will address this by evaluating more software systems.

Reliability: our methodology is laid out clearly; others could replicate this study with their own
equipment. The reliability of the OO metrics correlations are low. The purpose of this paper was to
lay out this methodology and hence we feel this aides the reliability of the result.

V. CONCLUSIONS

In this paper we proposed a methodology of relating software change to software power consumption
and we applied this methodology in 2 case studies on 2 distinct systems. In our case studies we observed
the effects of intentional performance optimization within Mozilla Firefox and observed a steady reduction
in power consumption of Firefox over time. We showed the the Electrolysis branch of Firefox 3.6, which
was dedicated to improving Firefox performance with a multi-process model, achieved lower power
consumption than the versions before it. With savings of 0.25W , if 4 million users upgraded to the
electrolysis branch there could be a savings of 1.0 Mega-Watt per hour worldwide; this is equivalent to
saving an American household’s monthly power use [19] per hour!

Our BitTorrent tests were executed on Azureus/Vuze across the actual revisions of the project, we
showed that even with a small number of revisions that power relevant behaviour was visible. We then tried
to relate OO software metrics, such as depth of inheritance and number of children to power consumption.
We found evidence of some effect, but we found that this relationship depended greatly on the structure
of the tests executed. Future work will include a more detailed evaluation of which kinds of changes lead
to changes in power consumption.

Our case studies demonstrated the feasibility and the promise of the green mining methodology:
measuring the power consumption of tests of multiple versions of a software system by combining power
measurement and mining software repositories methodologies.
Acknowledgments: Thanks to Taras Glek of Mozilla, Andrew Wong, Philippe Vachon, and Andrew
Neitsch.
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