
Empirical Software Engineering manuscript No.
(will be inserted by the editor)

Automated Topic Naming

Supporting Cross-project Analysis of Software Maintenance
Activities

Abram Hindle · Neil A. Ernst · Michael
W. Godfrey · John Mylopoulos

Received: date / Accepted: date

Abstract Software repositories provide a deluge of software artifacts to an-
alyze. Researchers have attempted to summarize, categorize, and relate these
artifacts by using semi-unsupervised machine-learning algorithms, such as La-
tent Dirichlet Allocation (LDA), used for concept and topic analysis to sug-
gest candidate word-lists or topics that describe and relate software artifacts.
However, these word-lists and topics are difficult to interpret in the absence of
meaningful summary labels. Current topic modeling techniques assume man-
ual labelling and do not use domain-specific knowledge to improve, contextu-
alize, or describe results for the developers. We propose a solution: automated
labelled topic extraction. Topics are extracted using LDA from commit-log
comments recovered from source control systems. These topics are given la-
bels from a generalizable cross-project taxonomy, consisting of non-functional

Abram Hindle
Dept. of Computing Science
University of Alberta
Edmonton, AB, CANADA
E-mail: abram@softwareprocess.es

Neil A. Ernst
Dept. of Computer Science
University of British Columbia
Vancouver, BC, CANADA
E-mail: nernst@cs.ubc.ca

Michael W. Godfrey
David Cheriton School of Computer Science
University of Waterloo
Waterloo, Ontario, CANADA
E-mail: migod@uwaterloo.ca

John Mylopoulos
Dept. Information Eng. and Computer Science
University of Trento
Trento, ITALY
E-mail: jm@disi.unitn.it

0DQXVFULSW
&OLFN�KHUH�WR�YLHZ�OLQNHG�5HIHUHQFHV

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



2 Abram Hindle et al.

requirements. Our approach was evaluated with experiments and case stud-
ies on three large-scale Relational Database Management System (RDBMS)
projects: MySQL, PostgreSQL and MaxDB. The case studies show that la-
belled topic extraction can produce appropriate, context-sensitive labels that
are relevant to these projects, and provide fresh insight into their evolving
software development activities.

Keywords Software maintenance · Repository mining · Latent Dirichlet
allocation · Topic models

1 Introduction

A key problem for practicing software maintainers is gaining an understanding
of why a system has evolved the way it has [26]. This is different from how
a system has evolved. Looking back on streams of artifacts scattered across
different repositories, inferring what activities were performed, when, and for
what reasons, is hard without expert advice from the developers involved. In
this work we provide a method of automatically labelling development topics
extracted from commit logs, this method is called labelled topic extraction.

Concrete applications of labelled topic extraction include the annotation
of development artifacts with NFR-related tags and the creation of project
dashboards. Annotating software development artifacts with NFR-related tags
would allow developers to create detailed directed queries of different artifact
kinds that concern the same NFR; for example, a developer could browse the
recent history of performance-related bug reports and code check-ins. Project
dashboards distill detailed information about a software system into a simpler
and more abstract view that summarizes key aspects of the development effort
[10]; labelled topic extraction would allow managers to track effort related to
specific NFR topics, such as usability or portability.

Topic modeling (such as Latent Dirichlet Allocation [2]) is a machine learn-
ing technique that creates multinomial distributions of words extracted from a
text corpus. This technique infers the hidden structure of a corpus using pos-
terior inference: the probability of the hidden structure given the data. Topic
models are useful in software maintenance because they summarize the key
concepts in a corpus – such as source code, commit comments, or mailing-list
messages – by identifying words that commonly occur together. Among other
uses, topic modelling can quickly give developers an overview of where signifi-
cant activity has occurred, and provide managers or maintainers an enhanced
understanding of the project’s history.

While machine learning techniques can automatically identify clumps of
commonly recurring terms, devising an appropriate summary label for each
clump/topic is harder. A given topic extracted from a set of commit logs
might consist of the following terms: “listener change remove add fire”. This
topic might reasonably be labelled as “event handling” by a developer who
understands the domain well, despite the fact that this label does not appear
in the word list itself. Current approaches to topic labelling rely on manual

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Automated Topic Naming 3

intervention by human experts, and also are limited to project-specific topic
labels. In this paper, we introduce labelled topic extraction, an approach that
automatically suggests project-independent labels for topics.

In general, the fruits of mining software artifacts are often project spe-
cific and hard to generalize. However, in our previous work we investigated
topic trends — that is, topics that recur over time — we observed that topic
trends often corresponded to non-functional requirements (NFRs) [18], which
is further emphasized in this paper due to the large numbers of NFR labelled
topics. This is encouraging, as NFRs have the property of being cross-domain
and widely applicable. In this sense, they are useful abstractions for developer
conversations about different software projects. Furthermore, there is a series
of standards on NFRs, such as ISO9126 [19], that are specifically intended
to apply to projects of varying types; this suggests that our goal of trying
to extract NFR-related development topics, such as those related to software
quality models, holds promise.

In this paper, we describe automated labelled topic extraction. It addresses
two gaps in the topic mining literature:

1. Topic mining of software has been limited to one project at a time. This
is because traditional topic mining techniques are specific to a particu-
lar data-set. Automated labelled topic extraction allows for comparisons
between projects.

2. Topic modeling creates word lists that require interpretation by the user
to assign meaning. Like (1), this means that it is difficult to discuss results
independent of the project context. Our technique automatically, or with
some initial training, assigns labels across projects.

This paper makes the following contributions:

– We introduce the concept of labelled topic extraction, using a taxonomy
of non-functional requirements (NFR) for our labels;

– We evaluate three kinds of automatic topic labelling methods: semi-unsupervised
labelling of topics (word-lists), supervised labelling of topics with a single
NFR (machine learning), and supervised labelling of topics with multiple
NFRs (multi-label machine learning);

– We examine how NFRs correlate with the work of individual developers;
– We provide a method of cross-project analysis via topic labelling, and we

apply these techniques to visualize NFRs over time, and to analyze main-
tenance activities.

We begin by discussing related work in Section 2. Next, we describe how we
generated our data (Section 3.1). For semi-unsupervised classification (Section
3.2), we begin by creating word-lists to signify when a topic matches an NFR
label. We then apply our classifier and analyze the results. In Section 3.3,
we manually annotate the topics, and use those annotations as training data
for supervised classification. To demonstrate an application of labelled topic
extraction, we use an exploratory case study of three open source database
systems to show how named topics can be compared between projects (Section

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



4 Abram Hindle et al.

4). The paper concludes with a discussion of limitations (Section 5), and future
work.

This work extends our previous work [15]. The major extensions in this
paper are as follows:

– We conducted another case-study on PostgreSQL.
– We used two authors to each annotate the same PostgreSQL topics in order

to compare these annotations.
– We used this new case-study to test inter-rater reliability (IRR), described

in Section 5.2.
– We conducted an analysis of PostgreSQL authors and their association

with NFRs and topics (Section 4.3).

2 Previous Work

The idea of extracting higher-level concerns and topics, also known as concepts,
aspects or requirements, has been approached from documentation-based and
repository-based perspectives.

Cleland-Huang and her colleagues have investigated mining requirements
documents for non-functional requirements (NFR) (software qualities) [6]. One
approach they tried was similar to this one, with keywords mined from NFR
catalogues found in Chung et al. [5]. Their approach resulted in a recall of 80%
with precision of 57% for the security NFR, but could not find a reliable source
of keywords for other NFRs. Instead, they developed a supervised classifier by
using human experts to identify an NFR training set. Our research is different
because we use a more comprehensive set of terms based on a taxonomy that
is an integral part of our framework. Another difference is that we make cross-
project comparisons instead of focusing on a single project. They relied on
relatively well-structured requirements documents instead of version control
histories that we use. The objective of Cleland-Huang’s study was to identify
new NFRs for system development, while our objective was to recover those
latent NFRs from commit-log messages of the project.

Similarly, Mockus and Votta [26] studied a large-scale industrial change-
tracking system. Mockus and Votta leveragedWordNet [9], an English-language
“lexical database” that contains semantic relations between words, including
common related forms (similar to word stemming), meronymy and synonymy.
They used WordNet for word roots as they felt the synonyms would be non-
specific and cause errors. Mockus et al. validated their labels with system
developers. Since we study multiple projects, instead of a single project, these
kind of interviews were not feasible (particularly in the distributed world of
open-source software).

Another approach is to extract concerns from software repositories. Marcus
et al. [22] used Latent Semantic Indexing (LSI) to identify commonly occurring
concerns for software maintenance. The concerns are given by the user, and
LSI is used to retrieve them from a corpus. Topic modelling generates topics

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Automated Topic Naming 5

that are independent of a user query, and relate only to word frequencies in
the corpus.

With ConcernLines, Treude et al. [28] showed tag occurrence using colour
and intensity, and our plots that rely on color and intensity have a similar look
and feel to Treude et al.’s plots. They mined developer created change request
tags from IBM Jazz repositories and used these to analyze the evolution of
a single product. Change requests in Jazz allow for users to annotate each
change request and check-in with tags such as “ui”, “usability” or “milestone
3”. The presence of a well-maintained set of tags is obviously essential to the
success of this technique.

In Baldi et al. [1], topics are named manually: human experts read the
highest-frequency members of a topic and assign a label accordingly. As dis-
cussed earlier, given the topic “listener change remove add fire”, Baldi et al.
would assign the label event-handling. The labels are reasonable enough, but
still require an expert in the field to determine them. Furthermore, these la-
bels are project specific, because they are generated from the data of that
project. For example we might have a label called “Oracle” in the MySQL
case, since Oracle owns MySQL. Our approach differs in two important ways:
we automate the process of naming the topics, and we label topics with project-
independent terms, in order to permit cross-project comparison.

Mei et al. [25] use context information to automatically name topics. They
describe probabilistic labelling, using the frequency distribution of words in a
topic to create a meaningful phrase. They do not use external domain-specific
information as we do, but we do not generate phrases from the topics.

Massey [23] and Scacchi [27] looked at the topic of requirements in open-
source software. Their work discusses the source of the requirements and how
they are used in the development process. German [13] looked at GNOME
specifically, and listed several sources for requirements: leader interest, mimicry,
brainstorming, and prototypes. None of this work addressed quality require-
ments in OSS, nor did it examine requirements trends. In Hindle et al. [17] we
examined release patterns in OSS. That work showed that there is a difference
between projects regarding maintenance techniques. This supports the result
described in this paper, that software qualities are not discussed with the same
frequency across projects.

This paper and our MSR 2011 paper [15] are based off of the work of
Ernst and Mylopoulos [7] and the work of Hindle et al. [18]. In Ernst and My-
lopoulos [7], we describe an earlier project that identifies changes in quality
requirements in GNOME software projects (GNOME is a Linux desktop envi-
ronment). Unlike this paper, this earlier approach was more exploratory and
had less validation. In particular, it uses different word-lists, solely uses text-
matching, and does not leverage machine learning strategies. Our approach in
this paper, and our MSR 2011 paper [15], extends Ernst and Mylopoulos [7]
by using word-lists to label topics, which are completely absent in the earlier
work. Hindle et al. [18] propose a windowed method of topic analysis that
we extend with labelled topics, NFRs and new visualizations. This windowed
method was to bucket documents by time windows (such as months), that

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



6 Abram Hindle et al.

Fig. 1 Research methodology process view.

could overlap if necessary, and then use LDA to extract documents from these
bucket. These topics were then related to topics in other adjacent buckets, and
joined if deemed sufficiently similar. This paper, and our MSR’2011 paper [15],
extend the method of Hindle et al. [18] by labelling topics and providing an
alternative visualization, the topic time-line described in Section 4.

3 Study Design and Execution

Figure 1 gives an outline of our methodology. We begin by gathering source
data and creating topic models. For semi-unsupervised labelling, we generate
three sets of word-lists as signifiers for NFRs. With supervised learning, we
train our data with manual annotations in order to match topics with NFRs.
Finally, these topics are used to analyze the role of NFRs in software mainte-
nance.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Automated Topic Naming 7

3.1 Generating the Data

To evaluate our approach, we sought candidate systems that were mature
projects and had openly accessible source control repositories. We selected sys-
tems from the same application domain, to control for differences in functional,
rather than non-functional, requirements. We used three different open-source,
partially-commercial database systems:

MySQL 3.23 — Started in 1994 and MySQL 3.23 was released in early 2001.
MySQL contains 320, 000 lines of C and C++ source code 1. We used the
MySQL 3.23 source control history from July 31st, 2000 to August 9th,
2004.

MaxDB 7.500 — Started in the late 1970s as a research project, and was later
acquired by SAP. As of version 7.500, released April 2007, the project has
over 940, 000 lines of C source code 2. We used the MaxDB 7.500 source
control history from June 29th, 2004 to June 19th, 2006.

PostgreSQL 7.3 — Started in the 1980s as a Berkeley research project 3. Post-
greSQL 7.3 contains 306, 000 lines of C code. We used the PostgreSQL 7.3
source control history from May 9th, 2002 to August 26th, 2004.

We explicitly chose older versions of mature projects from a stable problem
domain to increase the likelihood that we would encounter primarily mainte-
nance activities in our studies. We felt that a single domain would allow for
cross-project comparison. At the same time we recognize that problem do-
main alone does not guarantee functional and non-functional similarity. For
instance, each database system has a different focus. PostgreSQL tends to fo-
cus on fulfilling much of the SQL92 specification and adding more features,
while MySQL has been slow to adopt much of that specification in favour
of community-requested features. The consequence of our choice to look at a
single domain is to limit generalizability. What we show in this paper will be
somewhat biased towards database software.

For each project, we studied source control commit comments, the mes-
sages that programmers write when they commit revisions to a source control
repository. Most commits we observed had comments: 90% in MySQL 3.23,
98.5% in PostgreSQL and 99.99% in MaxDB 7.500. Commit comments are
often studied by researchers, as they are the most readily accessible source
of project interactions, and developers are often required to create them by
the repository mechanism (e.g., CVS). Additionally, relying only on commit
comments makes our approach more generalizable, as we do not assume the
presence of other artifact corpora. An example of a typical commit message,
fromMySQL, is: “history annotate diffs bug fixed (if mysql real connect() failed
there were two pointers to malloc’ed strings, with memory corruption on free(),
of course)”. We extracted these messages and indexed them by creation time.

1 generated using David A. Wheeler’s SLOCCount, http://dwheeler.com/sloccount.
2 http://www.sdn.sap.com/irj/sdn/maxdb
3 http://www.postgresql.org/docs/7.3/static/

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



8 Abram Hindle et al.

Each word in the message was stripped of punctuation and converted to low-
ercase. We summarized each message as a word distribution minus stop-words
such as “the” and “at”. We did not stem or apply any other transforms to
the messages. Our stop words are derived from the Natural Language Toolkit
(NLTK) English stop-word list 4.

For the commit message data-sets of each project, we created an XML file
that partitioned commits into 30 day periods. We chose a period size of 30
days as it is smaller than the time between minor releases but large enough for
there to be sufficient commits to analyze [18]. For each 30 day period of each
project, we input the messages of that period into Latent Dirichlet Allocation
(LDA), a topic analysis algorithm [2], and recorded the topics the algorithm
extracted.

A topic analysis tool such as LDA will try to find N independent word
distributions within the word distributions of all input messages. If there are
not N independent word distributions, the topics produced tend to be dupli-
cates of each other, that is, they share the top terms. During this study we
found that if we used a value of 20 for N , duplicate topics were infrequent.
Linear combinations of these N word distributions are meant to represent and
recreate the word distributions of any of the original messages. In other words,
these topics are cross-cutting collections of words relevant to one or more of
our commit messages. LDA extracts topics in an unsupervised manner; the
algorithm relies solely on the source data and word distributions of messages,
with no human intervention.

3.1.1 The High-level Labels

To facilitate cross-project comparison, we used a taxonomy of NFRs. This tax-
onomy is based on the ISO quality model, ISO9126 [19], which describes six
high-level NFRs: maintainability, functionality, portability, efficiency, usabil-
ity, and reliability. There is some debate about the terms in this model [3], and
whether they are a) the correct terms and b) correctly organized. However,
ISO9126 is “an international standard and thus provides an internationally
accepted terminology for software quality [3, p. 58],” and so we consider that
it is sufficient for the purposes of this research. Performance is an example of
an RDBMS word related to the efficiency NFR. We claim that these NFRs
are maintenance concerns (to varying degrees) in all software projects, and are
therefore well suited for comparisons between projects.

3.1.2 Creating a Validation Corpus

To evaluate both semi-unsupervised and supervised classification, we created
a validation set of manually labelled topics. Per each project, the annotators
(the first two authors) annotated each extracted topic in each period with the

4 NLTK: http://www.nltk.org/

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

http://www.nltk.org/


Automated Topic Naming 9

six NFR labels listed above. Annotators did not annotate each other’s anno-
tations, except that PostgreSQL (PgSQL) was annotated by both annotators
in order to evaluate inter-rater reliability. We looked at each period’s topics,
and assessed what the data—consisting of the frequency-weighted word lists
and messages—suggested was the most appropriate labels for that topic. We
selected the appropriate labels using auxiliary information as well, such as the
actual revisions and files that were related to the topic being annotated. For
example, for the MaxDB topic consisting of a message “exit() only used in non
NPTL LINUX Versions”, we tagged that topic portability. Given the top-level
annotations of portability, efficiency, reliability, functionality, usability, and
maintainability, the annotators annotated each topic with the relevant label.
We added a catch-all label, none, which we used when none of the six NFRs
was suitable. In some instances, we used finer-grained annotations that would
be aggregated up to one of these higher-level labels.

We validate classification performance using the area under the curve of Re-
ceiver Operating Characteristic [8], abbreviated ROC, sometimes called Area
Under the Curve or AUC, and the F-measure, which is the harmonic mean of
precision and recall, i.e., 2∗(P ∗R)/(P+R). Throughout the paper we will pro-
vide F-measure scores so that readers who are more familiar with F-measure
than ROC can intuitively interpret the results.

ROC values provide a score reflecting how well a particular learner per-
formed for the given data. ROC maps to the more familiar concepts of preci-
sion/sensitivity and recall/specificity: it plots the true positive rate (sensitiv-
ity) versus the false positive rate (1 - specificity). A perfect learner has a ROC
value of 1.0, reflecting perfect recall and precision. A ROC result of 0.5 would
be equivalent to a random learner (that is, issuing as many false positives as
true positives). While we recognize that using 0.5 as the base-line means our
ROC scores will look much larger than our F-Measure scores, we feel that the
knowledge that random selection is 0.5 or worse is helpful for interpreting our
results. The ROC of a classifier is equivalent to the probability that the clas-
sifier will rank a randomly chosen positive instance higher than a randomly
chosen negative instance.

We argue for using ROC over F-Measure because ROC suffers less from
bias, as F-Measure often skews towards the positive class [11,12], especially
in the case of class imbalance. Forman et al. [12] demonstrate that cross-fold
validation will often produce low F-measures given high class imbalance and
the presence of false negatives. Although recent work [12] has suggested that
while ROC suffers less bias than the average F-measure (Favg) for cross-folds,
F-measures (Ftp,fp) that are calculated from the sums of true-positives, false-
positive, and false-negatives across folds tend to exhibit no bias. Unfortunately
our experimental framework lacks a robust way to calculate Ftp,fp, thus we
still provide ROC and Favg . We consider our labelling classifiers acceptable if
they outperform a random classifier (0.5).

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



10 Abram Hindle et al.

3.2 Semi-unsupervised Labelling

In this section we describe how to label topics based on dictionaries mined from
sources external to the projects. We call this “semi-unsupervised” because
while there is no “training set”, we do seed the word-lists manually.

3.2.1 Generating Word Lists

In order to automatically label each topic with one of the six high-level NFRs,
we associate each NFR with a list of keywords or word-lists, in our parlance.
These word-lists were determined a priori and were not extracted from the
projects themselves, using the methodology explained below. In general, these
lists are project and domain independent. We intersected the words of the
topics and the words of our word-lists. We “labelled” a topic if any of its
words matched any of the word-list’s words. A topic could match more than
one NFR. We used several different sets of word-lists for comparison, which
we refer to as exp1, exp2, and exp3 in the text which follows.

Our first word-list set, exp1, was generated using the ontology for software
quality measurement described in Kayed et al. [20], which was constructed
using 80 source documents, including research papers and international stan-
dards. The labels we used were:

integrity, security, interoperability, testability, maintainability, trace-
ability, accuracy, modifiability, understandability, availability, mod-
ularity, usability, correctness, performance, verifiability, efficiency,
portability, flexibility, reliability.

Our second word-list, exp2, uses the ISO9126 taxonomy described above
(Section 3.1) to seed the word-lists. The terms from ISO9126 may not capture
all words occurring in the topics that are nonetheless associated with one of the
NFRs. For example, the term “redundancy” is one we considered to be relevant
to discussion of reliability, but is not in the standard. We recognize that terms
like this might be used in a different context with a different meaning, like
code-cloning. We therefore took the NFRs from the ISO9126 and added terms
to them.

To construct these expanded word-lists, we used WordNet [9]. We then
added Boehm’s software quality model [4], and classified his eleven ‘ilities ’
into their respective ISO9126 NFRs. We did the same for the quality model
produced by McCall et al. [24]. We then conducted a simple random analysis of
mailing list messages from an open source ecosystem, KDE. Like the GNOME
study we conducted in Ernst and Mylopoulos [7], KDE contains a suite of
different products covering a variety of software categories. If we judged a given
message to contain terms that were related to one of the NFRs in ISO9126,
we added it to our word-list. This allowed us to expand our word-lists with
more software-specific terms. Table 1 shows the labels (NFRs) and word-lists
we used for matching.

For the third set of word-lists, exp3, we extended the word-lists from exp2

using WordNet similarity matches. Similarity in WordNet means siblings in a

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Automated Topic Naming 11

Label Related terms

Maintainability testability changeability analyzability stability maintain maintain-
able modularity modifiability understandability interdependent de-
pendency encapsulation decentralized modular

Functionality security compliance accuracy interoperability suitability functional
practicality functionality compliant exploit certificate secured “buffer
overflow” policy malicious trustworthy vulnerable vulnerability accu-
rate secure vulnerability correctness accuracy

Portability conformance adaptability replaceability installability portable mov-
ableness movability portability specification migration standardized
l10n localization i18n internationalization documentation interoper-
ability transferability

Efficiency “resource behaviour” “time behaviour” efficient efficiency perfor-
mance profiled optimize sluggish factor penalty slower faster slow fast
optimization

Usability operability understandability learnability useable usable serviceable
usefulness utility useableness usableness serviceableness serviceability
usability gui accessibility menu configure convention standard feature
focus ui mouse icons ugly dialog guidelines click default human con-
vention friendly user screen interface flexibility

Reliability “fault tolerance” recoverability maturity reliable dependable respon-
sibleness responsibility reliableness reliability dependableness depend-
ability resilience integrity stability stable crash bug fails redundancy
error failure

Table 1 NFRs and associated word-lists – exp2

hypernym tree. We do not include these words here for space considerations 5.
Wordnet similarity is a very broad match. For example, the label maintain-
ability is associated with words ease and ownership, and the word performance
has a ‘sense’ that refers to musical performances, which is obviously unrelated
to software development. In general, as we proceed from word-lists in exp1 to
that in exp3, our lists become more generic.

3.2.2 Automatic Labelled Topic Extraction

Using our three word-lists (exp1, exp2, exp3), we labelled our topics with an
NFR where there was a match between a word in the list and the same word
somewhere in the frequency distribution of words that constitute the topic.
A named topic is a topic with a match. Unnamed topics occur where there is
no such match. This may indicate either a lack of precision in the word-lists,
or simply that this topic is not associated with non-functional requirements.
All experiments were run on the data-sets for each project (e.g., PostgreSQL,
MySQL, MaxDB). LDA extracted 20 topics per period for each project. Each
change-log message was lightly processed before applying LDA: words were
converted to lowercase with punctuation removed and then stop words were
removed. This labelling is semi-unsupervised because the corpus is not derived

5 For our word lists visit http://softwareprocess.es/nomen/

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

http://softwareprocess.es/nomen/


12 Abram Hindle et al.

Project Measure exp1 exp2 exp3

MaxDB 7.500 Named Topics 305 183 330
Unnamed Topics 84 206 59

MySQL 3.23 Named Topics 341 202 469
Unnamed Topics 245 384 117

PgSQL 7.3 Named Topics 639 543 640
Unnamed Topics 1 97 0

Table 2 Automatic topic labelling for MaxDB, MySQL and PostgreSQL

from the project being analyzed, and we did not label the project’s topics our-
selves for a training set. The motivation behind this technique is that because
most software often addresses similar issues, we can use the domain knowledge
of software to label relevant topics.

Table 2 shows how many topics were labelled for MaxDB, MySQL and
PostgreSQL. Notice how PostgreSQL had far fewer unlabelled topics, Post-
greSQL also was under going far more development as we evaluated 7744
PostgreSQL commits versus 8664 MaxDB commits and 6223 MySQL com-
mits. In terms of change-log comment words PostgreSQL had 164724, while
MaxDB had 68203, and MySQL had 101081. This implies there were more
PostgreSQL terms for the topic analyzer to produce topics with. And thus
we suspect that PostgreSQL topics were flooded with many terms, indicating
that perhaps we needed more than 20 topics per month for PostgreSQL, as
this result indicates there is a lot of overlap in the topics.

For exp1 the labels with the most topics were correctness (182/305/640,
which represent MySQL, MaxDB and PostgreSQL topic counts, respectively)
and testability (121/238/625).We did not see many results for usability (4/0/138)
or accuracy (3/0/27), which were infrequently matched. Note the significantly
higher result for usability in PostgreSQL—this suggests a difference in how
project developers are discussing usability, at least with respect to our analysis.
We also looked for correlations between our labels: excluding double matches
(self-correlation), our highest co-occurring labels were verifiability or correct-
ness with traceability, and testability with correctness.

For exp2, there are more unnamed topics than exp1. Only reliability pro-
duces the most matches, mostly due to the word “error”. Co-occurrence results
were poor. This suggests our word lists were overly restrictive. For PostgreSQL
reliability and usability co-occurred with portability and efficiency.

For exp3, we generally labelled more topics. As mentioned above, the word-
lists are broad, so there are likely to be false-positives (discussed below). The
most frequent label across all projects (for this word-list, and unlike exp1)
was usability, and the least frequent label was maintainability. This implies
that our signifiers for usability in this experiment were fairly broad. Common
co-occurrences were reliability with usability, efficiency with reliability, and
efficiency with usability.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Automated Topic Naming 13

Fig. 2 Performance, ROC values (range: 0–1), of semi-unsupervised topic labelling for each
NFR and per word-list. The dashed line indicates the performance of a random classifier.
This graph shows how well the semi-unsupervised topic labelling matched our manual an-
notations.

3.2.3 Analysis of the Semi-unsupervised Labelling

For each quality in the high-level ISO 9126 taxonomy (namely, Maintainabil-
ity, Usability, Reliability, Efficiency, Portability, Functionality) we assessed
whether the semi-unsupervised labels for a topic matched the manual annota-
tions we created for the validation corpus. Recall that the manual annotations
were not used to train the labelling process. As described in Section 3.1 we
used both ROC and F-measure measures to evaluate the performance of the
classification. Figure 2 shows our ROC results for PostgreSQL, MaxDB and
MySQL. We omit plots of exp1 due to poor results. We describe F-measure
results in the text below.

Because our ground truth annotations were relevant only to ISO9126, exp1
had poor performance due to the overlap between ISO9126 and the Kayed
ontology (i.e., we annotated topics with labels which did not appear in the
validation corpus). For exp1 the F-measures for the NFRs for MaxDB were
from 0 to 0.18 with an average (of all NFRs) of 0.03, for MySQL were from 0
to 0.16 with an average of 0.05, and for PostgreSQL 0 to 0.15 with an average
of 0.07.

For exp2, the average F-measure (macro-F1) for MaxDB was 0.24 with a
range 0.091 to 0.37, and 0.16 for MySQL with a range of 0 to 0.41. PostgreSQL
had an average F-measure of 0.30 with a range of 0.09 to 0.38. MaxDB had
an average precision and recall of 0.25 and 0.22 while MySQL had 0.41 and
0.10 and PostgreSQL 0.31 and 0.29, respectively.

For exp3, the average F-measure (macro-F1) for MaxDB was 0.26 with a
range 0.11 to 0.47, and 0.36 for MySQL with a range of 0.10 to 0.65. Post-
greSQL had an average F-measure of 0.42 with a range of 0.31 to 0.54. MaxDB
had an average precision and recall of 0.16 and 0.67 while MySQL had 0.3 and

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



14 Abram Hindle et al.

0.48. PostgreSQL had average precision and recall of 0.27 and 0.95, respec-
tively.

Based on this we found that reliability and usability worked well for MaxDB
in exp2 and better in exp3. exp1 performed poorly. MySQL had reasonable re-
sults within exp2 for reliability and efficiency. MySQL’s results for efficiency
did not improve in exp3 but other qualities such as functionality did improve.
For PostgreSQL in exp2, reliability and efficiency were likewise the most accu-
rate, while functionality remained poor. Functionality improved dramatically
by exp3. Our F-measure scores were low and many ROC scores were 0.6 or
less, but our classifier, in most cases, still performed substantially better than
random (0.5), even in the face of heavy class-imbalance for qualities such as
usability and efficiency. While there is much room for improvement, we are
seeing some correlation between our quality word lists and relevant topics.

3.3 Supervised Labelling

Supervised labelling requires expert analysis of the correct class/label to assign
a label to a topic. In our approach, we use the top-level NFRs in the ISO9126
standard [19] for our classes, but other taxonomies are also applicable.

We used a suite of supervised classifiers, WEKA [14], that includes ma-
chine learning tools such as support vector machines and Bayes-nets. We also
used the multi-labelling add-on for WEKA, Mulan [29]. Traditional classifiers
label topics with a single class, whereas Mulan allows for a mixture of classes
per topic, which is what we observed while manually labelling topics. For ex-
ample, a given topic (word distribution) may be ‘about’ both usability and
maintainability, if this topic was a product of a discussion on design trade offs.
The features we used are word counts/occurrence per topic, if a word occurs
frequently enough in a topic we consider it a feature of the topic.

To assess the performance of the supervised learners, we did a 10-fold cross-
validation [21], a common technique for evaluating machine learners, where the
original data is partitioned randomly into ten sub-samples, and each sample
is used to test against a training set composed of the nine other samples. We
discuss these results below.

3.3.1 Analysis of the Supervised Labelling

Because our data-set consisted of word counts we expected Bayesian tech-
niques to perform well. Bayesian techniques are often used in spam filtering,
which is similarly interested in word distributions. We tried other learners that
WEKA [14] provides, including rule learners, decision tree learners, vector
space learners, and support vector machines. Figure 3 shows the performance
of the best performing learner per label: the learner that had the highest ROC
value for that label. The best learner is important because one uses a sin-
gle learner per label. When applying our technique, per each NFR one should

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Automated Topic Naming 15

      Portability E!ciency Reliability Functionality Maintain. Usability

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
!"#$%
!&'()*
+,'()

Fig. 3 ROC value for the best learner per label for MaxDB, MySQL and PgSQL. Values
range from 0–1. Dashed line indicates the performance of a random classifier.

select the best performing learner possible. Given the tractability of these tech-
niques, a tool which applied all learners and presented the best result should
be feasible.

Figure 3 shows that MaxDB and MySQL have quite different results, as the
ROC values for reliability and functionality swap between projects. For Post-
greSQL, the performance is nearly always poorer than the other two systems.
The reason for this lack of performance could be that parameter we chose for
number of topics, N , could be non-optimal for PostgreSQL. One explanation
is that given the size of the PostgreSQL datasets, it was becoming hard to
distinguish one topic from the next. PostgreSQL’s data-set was the largest of
the 3 projects: the XML datable that described the PostgreSQL topics that we
annotated was 8 times larger than MySQL and 1.7 times larger than MaxDB.
These size differences arise from the number of commits, the number of files
and the verbosity of the commit descriptions.

Although we used a variety of machine learners, we found that Bayesian
techniques performed the best on all projects. We believe this is due to the
large number of features they can handle. Our best-performing learners—
Discriminative Multinomial Naive Bayes, Naive Bayes and Multinomial Naive
Bayes—are all based on Bayes’ theorem and all make the naive assumption
that the features supplied are independent. One beneficial aspect of this result
is that it suggests we can have very fast training and classifying since training
on or classifying one instance with Naive Bayes can be calculated in O(N) for
N features.

The range of F-measures for MySQL was 0.21 to 0.77 with a mean of 0.48.
MaxDB had a range of 0.17 to 0.61 with a mean of 0.39. Finally, PostgreSQL
had a range of 0.04 to 0.9 and a mean of 0.43.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



16 Abram Hindle et al.

      BR CLR HOMER

1

0.4

0.5

0.6

0.7

0.8

0.9
!"#$%

!&#$%

(a) MySQL

      BR CLR HOMER

1

0.4

0.5

0.6

0.7

0.8

0.9
!"#$%

(b) MaxDB

Fig. 4 MySQL and MaxDB macro and micro-ROC results per multi-label learner. Possible
values range from 0–1. Dashed line indicates the performance of a random classifier.

The less-frequently occurring a label, the harder it is to get accurate re-
sults, due to the high noise level. Nevertheless, these results are better than
our previous word-list results of exp2 and exp3, because the ROC values are
sufficiently higher in most cases (other than MaxDB reliability, MySQL effi-
ciency, and PostgreSQL maintainability). The limitation of the approach we
took here is that we assume labels are independent; however, labels could be
correlated with each other. The next section (3.4) addresses the issue of a lack
of independence and correlation between labels using multi-label learners.

3.4 Applying Multiple Labels to Topics

As noted in Section 3.1, each topic in our data-set can be composed of zero or
more NFRs. For example, a commit message might address reliability in the
context of efficiency, or make amaintainability improvement in the source code
that relates to usability. However, traditional machine learning techniques,
such as Naive Bayes, can map topics to only a single class. The Mulan [29]
library encapsulates several different multi-label machine learners which can
label elements with multiple labels. Mulan also includes methods for deter-
mining the performance of these learners.

Two perspectives used to evaluate multi-label learners are with micro or
macro measurements (shown in Figure 4a). Macro measurements are aggre-
gated at a class or label level (per class) while micro measurements are at the
element level (per element). A macro-ROC measurement is the average ROC
over the ROC values for all labels, where a micro-ROC is the average ROC
over all examples that were classified. For MaxDB, the macro-ROC values are
undefined because of poor performance of one of the labels.During cross-folds
validation if the class imbalance or poor learner performance causes a division
by zero when evaluating one of the NFR labels (in this case usability), cre-

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Automated Topic Naming 17

      BR CLR HOMER

1

0.4

0.5

0.6

0.7

0.8

0.9
!"#$%&'(

!"#$%&')

(a) Macro-ROC

      BR CLR HOMER

1

0.4

0.5

0.6

0.7

0.8

0.9
!"#$%&'('

!"#$%&')

(b) Micro-ROC

Fig. 5 Author #1 and author #2 ROC results for PostgreSQL.

ating an undefined value. This undefined value is propagated through to the
mean of ROC per NFR label, causing the end calculation of macro-ROC to
be undefined.

Figure 4 presents the results of Mulan’s best multi-label learners for the
MaxDB and MySQL projects, and Figure 5 for PostgreSQL. Calibrated Label
Ranking (CLR) is a learner that builds two layers. The first layer determines
if an entity should be labelled, while the second layer determines what labels
should be assigned. The Hierarchy Of Multi-label classifiERs (HOMER) and
Binary Relevance (BR) act as a hierarchy of learners: BR is flat, while HOMER
tries to build a deeper hierarchy for a more accurate learner [29].

Figure 5 shows the ROC results for the PostgreSQL product. In this figure,
we show the relative differences when we use different training data-sets from
different annotators. In 5a we see that ROC results are very similar. In the
other figure, however, author #1 has dramatically better performance. We
speculate that this is due to the particular annotation decisions made by author
#1; in some sense he performed better. The difference in Macro-ROC was not
significant, but the difference in Micro-ROC was, as the p-value of Student’s
T-test was < 0.001.

These classifiers performed better than other multi-label classifiers as they
have the best micro and macro ROC scores. The multi-label and single-label
learners had similar performance: for MySQL, BR and Naive Bayes had similar
macro-ROC scores of 0.74.

4 Understanding Software Maintenance Activities

As we mentioned in the introduction, a key issue in software maintenance is
understanding why a system has evolved the way it has. In this section we
demonstrate the value of labelled topic extraction in addressing this issue.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



18 Abram Hindle et al.

Labelled topics address why questions by associating a commit with the un-
derlying software qualities which motivated that change. The how of a change
is the change itself, the software quality behind it, the why is what we are
after. We investigate the history of the three large-scale database systems that
we studied. We use our technique to show the topic of development efforts
over time in each project. We motivated our investigation with three research
questions:

RQ1. Do NFR frequencies change over time? If a particular NFR was of more
interest at one point in the life-cycle than another, this suggests that devel-
opment activity shifted focus. For example, if a developer expected to see
a recent focus on reliability, but instead usability dominated, they might
re-prioritize upcoming work items.

RQ2. Do projects differ in their relative interest in NFRs? A project manager,
especially a systems-manager, would be interested in knowing whether a
particular NFR, such as reliability, was more important for one project
than another. This question could be used to confirm the initial design
goals, or to track the progress on that quarter’s objectives. The difference
in NFR proportion is interesting because it implies a difference in focus
between projects.

RQ3. Do different developers work on different NFRs? For a given project, it is
reasonable to think that developers are either assigned (in commercial orga-
nizations) or choose (in open-source organizations) to work on a particular
NFR. For example, one developer might be more junior, and take respon-
sibility for the low-impact reliability fixes. Another, more senior developer
might assume responsibility for major improvements such as efficiency im-
provements.

Topic time-lines are depicted in Figures 6a, 6b and 6c. These topic time-
lines show the temporal patterns of NFR frequencies. This is generated from
the manually annotated topics, although this visualization can be generated
from the results of labelled topic extraction. Note that there are no unlabelled
topics in this data-set.

There are two measures represented. One, the relative frequency, shown in
the grey histogram boxes, represents the number of topics with that NFR in
that period, relative to the maximum number of topics assigned to the NFR.
For example, in Figure 6a we see a spike in portability and functionality fre-
quency in September 2002. The second, absolute frequency, is shown using cell
intensity, and compares the number of topics labelled with the NFR per period
relative to the maximum number of labelled topics overall. For instance, Figure
6a shows that the NFRs functionality, portability and maintainability contain
more labelled topics, since these NFRs have been more intensely shaded. One
interesting stream is efficiency in PostgreSQL, which shows periodic activity,
and suggests that efficiency-related changes have longer lasting effects. A more
systematic analysis of periodicity is necessary to properly conclude this. The
topmost row in each diagram lists historical events for that project (such as a
release).

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Automated Topic Naming 19

(a) MySQL 3.23

(b) MaxDB 7.500

(c) PostgreSQL 7.2

Fig. 6 NFR label per period. Each cell represents a 30-day period. Grid cell intensity
(saturation) is mapped to label frequency relative to the largest label count of all NFRs.
Grey histogram bars indicate label frequency relative to that particular NFR’s largest label
count. Dashed vertical lines relate a project milestone (*Key events* ) to our topic windows.

We analyzed each project’s developer mailing list for external validation
(the body of the email). We use labelled topic extraction to pick out the un-
derlying NFR activity behind these events. For example, both MaxDB and
MySQL show a high number of NFRs recognized at the first period of analy-
sis. This is due to our window choice: we deliberately targeted our analysis to

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



20 Abram Hindle et al.

when both MySQL 3.23 and MaxDB 7.500 were first announced. For MaxDB,
version 7.5.00 was released in December of 2003.We know that release 7.5.00.23
saw the development of PHP interfaces, possibly accounting for the simulta-
neous increase in the portability NFR at the same time. The gap in MaxDB
(Figure 6b) is due to a shift in development focus (from February 2005 to June
2005) to MaxDB 7.6, which is released in June 2005.

The development period of MySQL we studied (Figure 6a) saw the first
releases to be licensed under the GPL. Version 3.23.31 (January, 2001) was
the production release (non-beta), and the time-line view shows a flurry of
topics labelled with functionality and maintainability. After this point, this
version enters the maintenance phase of its life-cycle. In May 2001, there is
an increase in the number of topics labelled with portability. This might be
related to release 3.23.38, which focused on Windows compatibility. Similarly,
in August, 2002, both functionality and portability are frequent, and mailing
list data suggests this is related to the release of version 3.23.52, a general
bug fix with a focus on security (a component of the functionality NFR in the
ISO9126 model). After this point, efforts shift to the newer releases (4.0, 4.1,
5.0) and subsequently becomes more functionality oriented.

By contrast, the PostgreSQL time-line (Figure 6c) is extracted from a cen-
tral trunk and is not version-specific (due to differences in how the projects
manage branches). Therefore development tends to be focused on releases 7.3,
7.4 and 7.5/8.0 alpha. For example, a priority for the 8.0 candidate was a
Windows-native port of the source code, which seems to correlate with the
portability NFR increasing in frequency in mid-2004. Before the 7.4 release,
usability, functionality and portability all increase in frequency, possibly re-
flecting the interest in adding features and documentation for the release. In
the following sections we turn to our research questions:

4.1 RQ1: Do NFR Frequencies Change Over Time?

In both MaxDB and MySQL the frequencies generally decreased with age.
However, there are variations within our NFR labels. In MySQL, usability
and efficiency do not appear very often in topics. A proportionately smaller
number of commits addressed these NFRs. Certain peaks in topic numbers
coincide with a particular emphasis from the development team on issues such
as new releases or bug fixes. This suggests that maintenance activity is not
necessarily strictly decreasing with time, but rather episodic and responsive
to outside stimuli. In MaxDB, we can observe that Maintainability topics
became more prevalent as MaxDB matures. This is likely due to our analysis
time-frame for MaxDB being shorter than the time-frame for the MySQL
product.

In PostgreSQL, by comparison, the frequencies seem to become somewhat
cyclic, since we are not studying a maintenance-phase for the product, but
rather ongoing feature addition and usability improvements.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Automated Topic Naming 21

4.2 RQ2: Do Projects Differ in Their Relative Topic Interest?

We found significant overall variation in the projects. MySQL 3.23 had propor-
tionally more topics labelled functionality, while MaxDB had proportionally
more efficiency related topics. MaxDB was a very mature release “donated”
to the open-source community, whereas MySQL was in its relative infancy,
and security problems were more common (security is a component of func-
tionality in the ISO9126 model). PostgreSQL had more NFR topics in general,
but portability, functionality and usability were more prevalent in PostgreSQL.
One notable difference between PostgreSQL and the other two projects is that
many of the commits for PostgreSQL were UI changes and documentation
changes. PostgreSQL also seemed to focus more on reliability later in the case
study than earlier like MySQL. In all cases portability was a constant main-
tenance concern and was prevalent throughout the lifetime of the projects. It
may surprise developers how often portability arises as a concern.

4.3 RQ3: Do Different Developers Work on Different NFRs?

We wanted to see whether developers in the PostgreSQL project6 worked on
similar NFRs. For example, one developer might be a usability expert, while
another developer is focused on security. We assume that the NFR labels as-
sociated with a commit implicitly reflect work on those NFRs. Being able to
report on where effort is being expended is useful for tracking productivity
(among other things). We explored this issue by extracting, for each topic in
the PostgreSQL data-set, the developer names responsible for the commits
used to generate that topic, and the NFRs that are associated with the topic.
The analysis in this section used Neil’s annotations. This produced a map
which associated developer name with NFR labels. The six NFR labels (main-
tainability, usability, efficiency, functionality, portability, reliability) and the
None label describe a 7-dimensional space (essentially a distribution), into
which we can position developers, based on the frequency with which each
label occurs in the map.

Using this space, we first conducted pairwise X2 (chi-squared) tests and
Kolmogorov-Smirnov tests for each developer pair on their NFR distributions
(18 developers, 306 pair-wise tests). We found that in 27% of these tests, the
two developers were significantly different (i.e. distant in the 7-d space and
have significant p-values less than 0.05). This implies that there are developers
who focus on different NFRs or different proportions of NFRs, but the majority
of developers have similar NFR distributions.

In Figure 7 we clustered the developers from PostgreSQL using the Ward
method of Hierarchical clustering on the 7-dimensional space. This will group
developers according to the Euclidean distance metric. The height in Figure
7 describes the euclidean distance between elements, in terms of the path We

6 Since the MySQL and MaxDB data had poor records for developer ids, we focused on
PostgreSQL.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



22 Abram Hindle et al.

m
om

jia
n tg
l

th
om

as

in
ou

e

is
hi

i

te
od

or

da
rc

y

sc
ra

pp
y

ju
rk

a

jo
e

de
nn

is

w
ie

ck

pg
sq

l pe
te

re

m
es

ke
s

da
ve

c

ne
ilc

ba
rry

0
20

0
40

0
60

0
80

0
10

00
12

00
Cluster Dendrogram

Organized into 2 and 6 clusters
PostgreSQL Authors

H
ei

gh
t

Fig. 7 PostgreSQL Author Clusters: Authors clustered by Euclidean distance of their NFR
contributions. The outer rectangles (black) reflect the clustering of authors into 2 clusters;
while the inner rectangles (dim grey) reflect clustering of authors into 6 clusters. The height
is a measure of cluster similarity, Euclidean distance, where smaller values are more similar.
Individuals that share branches are more similar to each other individuals who do not. The
longer the path, in terms of height, between two individuals, the more different their NFR
contributions are.

clustered the authors into both 2-clusters and 6-clusters. We chose 6-clusters
because the difference in distance between entities and centroids was minimal
at 6-clusters, and the derivative of distance was the highest in that region as
well.

Figure 7 shows that when we use 6-clusters, petere, one of the major
contributors, is in his own cluster while two other major contributors, tgl and
momjian form their own cluster (i.e., they are distant from one another in the
7-dimensional space). This is interesting because it means that the important
developers are have different proportions of NFR-relevant contributions; they
have different focuses during development. In terms of the 2-clusters, we can
see that momjian and tgl are in the same cluster, but petere is not. The most
frequent committers do not share the same clusters, even at the coarsest level

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Automated Topic Naming 23

NFR Developer

Usability dennis, neilc
Portability scrappy, meskes
Efficiency inoue, neilc
Reliability jurka, joe
Functionality thomas, weick
Maintainability scrappy, ishii

Table 3 Developer interest in NFRs

of clustering, 2 clusters. This implies that developers in this sample do work
on different sets of NFRs and have different software quality focuses.

If we compare the global NFR distribution (that is, the relative global
frequency of each NFR label) to each author we find that 25% of the authors
have a similarity (Pearson correlation) of 0.47 or less. In other words, for
these authors (gathered to the lower left of Figure 8), their NFR distribution
does not match well with the global distribution. Authors momjian and tgl
are in the top right of Figure 8, dominate in topic count and commit count,
and so are very similar to the global distribution of NFR topics. Figure 8
demonstrates that although a few authors dominate in the number of commits,
many authors exhibit different behaviour in terms of the NFR-relevant topics
of their commits. Furthermore, there are no authors in the top left corner,
indicating that the authors who commit less, do not contribute with a similar
NFR-topic distribution as momjian or tgl. We found that number of commits
correlated with an author’s similarity to the global NFR distribution (0.59
Pearson), i.e., the variables “number of topics associated with a developer”
and “number of commits” are not discriminative.

Our working theory is that less frequent committers are more specialized,
e.g., interested in a specific NFR, while the main developers (i.e., frequent
committers) either have wider responsibility or have more time to be widely
involved. An interesting extension would be to compare this data with the
PostgreSQL source code files, to see which developer touched which file.

We say that an author (read developer) is “proportionately interested” in
an NFR if, for all NFRs with which he or she is associated, a given NFR
receives the plurality of his or her commits. This is a measure of relative
interest and is independent of number of commits (subject to the caveat about
frequent committers, above). If we look at which of the top 15 developers were
proportionately interested in a given NFR, we find the associations identified
in Table 3. Our data also showed that for these top developers, between 1/10
and 1/3 of their commits were labelled with a single NFR.

Based on Figure 8 we wanted to see which clusters momjian, tgl, and
petere would be in if we evaluated the clusters proportionately, that is if
we use distance measures that normalize the data and ignore magnitude (e.g.
turning an author’s NFR contributions into a histogram or unit-vector) such
as cosine distance, Euclidean distance of unit vectors, or Pearson correlation
distance (1−r). Whereas, Euclidean distance uses both angle and magnitude of

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



24 Abram Hindle et al.

0.4 0.6 0.8 1.0

0
20

0
40

0
60

0
80

0
10

00
Author Correlation with NFR distribution versus # of Author Topics

Similarity of Author NFR topics to global distribution

# 
of

 T
op

ic
s 

as
so

ci
at

ed
 w

ith
 A

ut
ho

r

momjian

thomas
davecneilc

ishii

darcy

barry

wieck
inoue

pgsql
teodor

jurka

tgl

scrappy

petere

dennis

meskes

joe

Fig. 8 Author commit count versus the similarity of the NFR distribution of an Author to
the Global Distribution of NFR topics. Similarity is Pearson correlation between the counts
of NFR relevant topics associated with an Author and the total counts of NFR relevant
topics.

a vector. For all three non-magnitude distances measures we tend to see that
the three largest contributors, momjian, tgl, and petere inhabit the same
clusters when we use 2-clusters or 6-clusters. This confirms the observations
in Figure 8, which uses Pearson correlation, that the larger contributors tend
to be proportionally similar.

One potential confound for this analysis is that we could be describing de-
veloper style instead of developer focus. Developer style would be a developer’s
likelihood to use terms found within our dictionaries and training corpus in
their commit messages. Furthermore, a top developer, in terms of number of
commits, will have more samples, and thus be more likely take on a more
general role. For example, we found in a previous project [16] that there was a
good correlation between the words used to describe a commit and the author
of the commit.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Automated Topic Naming 25

Cohen’s Kappa Spearman Correlation
Portability 0.154 0.253
Functionality -0.014 -0.014
Reliability 0.005 0.005
Maintainability 0.082 0.082
Efficiency 0.231 0.258
Usability 0.009 0.014
None 0.062 0.081
Everything 0.107 0.108

Table 4 Inter-rater Reliability on PostgreSQL

5 Discussion

5.1 Annotation Observations

We found many topics that were not non-functional requirements (NFRs) but
were often related to them. For instance, concurrency was mentioned often in
the commit logs and was related to correctness and reliability, possibly because
concurrent code is prone to bugs such as race conditions. Topics related to
configuration management and source control appeared often; these kinds of
changes are slightly related to maintainability. A non-functional change that
was not quality-related was licensing and copyright; many changes concerned
updating copyrights or ensuring copyright or license headers were applied to
files. In these cases we assigned the None label to the topic.

We noticed that occasionally the names of modules would conflict with
words related to other non-functional requirements. For instance, optimizers
are very common modules in database systems: all three projects, MySQL,
MaxDB, and PostgreSQL have optimizer modules. In MySQL the optimizer
is mentioned but often the change addresses correctness or another quality.
Despite this difference, the name of the module could fool our learners into
believing the change was always about efficiency. In these cases the advantages
of tailoring topic names to specific project terminologies are more clear. Project
specific word-lists would avoid automated mistakes due to the names of entities
and modules of a software project.

5.2 Inter-rater reliability

To determine inter-rater reliability two of the authors—Ernst and Hindle—
each annotated the PostgreSQL topics, and then evaluated each other’s anno-
tations. Table 4 describes the Cohen Kappa and the Spearman correlation of
our per-topic annotations for each NFR. We evaluated inter-rater reliability
using each NFR, because a single topic could be tagged with more than one
NFR.

These results are fairly poor. The aggregate view of a Kappa of 0.1 in-
dicates there is some weak agreement. We found that there was good agree-
ment in terms of lack of an annotation, but disagreement regarding which

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



26 Abram Hindle et al.

annotation to apply. After some discussion we concluded that usability was
a primary source of disagreement. For instance, should we annotate a com-
mit which updates the user manual as a usability-related change? Is adding
a command-line option a usability issue? These kinds of questions illustrate
some of the agreement, disagreement, and ambiguity about these labels. We
therefore recommend that future annotators train and discuss how and when
an annotation is appropriate. This ought to be easier to do if an internal team
is using our tool, since (presumably) there is a greater shared understanding
of project activities, and therefore, potentially greater rater agreement.

To evaluate our results empirically, we compared them to the annotations
that would result if the seven labels were applied randomly. In the first sim-
ulation, as shown by Figure 9, we sampled with replacement from our own
NFR label distributions to produce random ratings that looked like our own.
We then applied the Kappa-statistic on this sampling and our labelling, and
repeated this 100,000 times. We then compared this distribution of simulated
IRR ratings against our own IRR ratings. We found that for 4 out of 7 NFR
labels, the IRR values for our labels were greater than the random IRR mea-
sures 96% of the time. For portability and efficiency, our IRR was greater
100% of the time both for Neil’s ratings, Abram’s ratings and the union of
both Neil and Abram. We know this by evaluating our IRR ratings against
the empirical cumulative distribution function (ECDF) of the IRR ratings of
the 100,000 simulation runs. One explanation of the positive result for porta-
bility is that such changes are often accompanied by clear indicator terms such
as Windows, Linux, SunOS, etc.

Figure 9 depicts the IRR of these simulated sampled ratings versus our
IRR using the Kappa statistic. We also achieved similar results if the ratings
were pulled from uniform distributions. These experiments indicate that our
labels and ratings were an improvement on random annotations in all cases,
with the exceptions of functionality, reliability and usability.

Were our results harmed by low IRR scores? For MaxDB and MySQL,
since each annotator (Neil or Abram) acted as the sole oracle, the results
for either system still stand, but construct validity is harmed since it is not
clear if the annotated NFR actually represented the NFR relevant to that
commit. The measured empirical performance of each system still stands, but
the comparison between systems in terms of NFRs might be harmed by low
IRR scores.

The low IRR scores indicate the underlying difficulty of annotating such
a data-set. To improve IRR, consistent training of the annotators or the use
of more annotators might help. Other improvements could be gained by ap-
proaching some of the original developers and using their expertise to annotate
the data according to their original, recollected intent. Improvements could be
therefore be gained by producing more robust training samples that use mul-
tiple raters, or experts, who are similarly trained and willing to discuss and
negotiate disagreements.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Automated Topic Naming 27

Portability Functionality Reliability Maintainability Efficiency Usability None

−0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Human Ratings ( Both ) versus Sampled Random Ratings

Interrater Reliability per NFR Topic Label

Fig. 9 Measured IRR versus IRR of random labeling simulations. Perfect IRR is 1.0. The
red line and points highlight the measured inter-rater reliability of NFR topics labels between
annotators of PostgreSQL. The box-plots are the distribution of 100,000 IRR ratings between
random simulation, drawn from our distribution of ratings, and our labelling of NFRs. Note
how for 4 of the 7 NFRs the measure IRR is distinctly higher than the median of the
simulations.

5.3 Summary of Techniques

While an unsupervised technique such as LDA is appealing in its lack of hu-
man intervention, and thus lower effort, supervised learners have the advan-
tage of domain knowledge, which typically means improved results. Creating
annotated topics (i.e., manual labels) for training is painstaking, but with a
suitably representative set of topics, we feel that the effort is acceptable for
non-academic use. To annotate all topics took us approximately 20 hours per
project, but we estimate only 10% of the topics need annotation to produce
useful results.

Very rarely did exp2 and exp3 (semi-unsupervised word matching) ever
perform as well as the supervised machine learners. For MaxDB, reliability
was slightly better detected using the static word list of exp2. In general, the
machine learners and exp3 did better than exp2 for MySQL and MaxDB, yet
for PostgreSQL the exp2 word-lists performed better. For both MySQL and
MaxDB usability was better served by exp2. Usability was a very infrequent
label, however, which made it difficult to detect for both approaches.

The semi-unsupervised labelling had difficulty distinguishing between com-
mon labels and infrequent labels. The learners would occasionally mislabel a
topic deserving of an infrequent label with a more common label. The word-
lists for correctness tended to be too lengthy, non-specific and broad, especially

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



28 Abram Hindle et al.

if WordNet words were used, since the NFRs are typically loosely defined con-
cepts in common parlance.

We found that the multi-label learners of BR, CLR and HOMER performed
only as well or worse for Macro-ROC as the single-label Naive Bayes and
other naive Bayes-derived learners. This suggests that by combining together
multiple Naive Bayes learners we could probably label sets of topics effectively,
but it would require a separate Naive Bayes learner per label.

With ROC values ranging from 0.6 to 0.8 for MySQL and MaxDB and 0.47
to 0.6 for PostgreSQL, we can see there is promise in supervised methods. exp2
and exp3 both indicate that static information can be used to help label top-
ics without any training whatsoever. MySQL and MaxDB’s machine learners
made some decisions based off a few shared words: bug, code, compiler, data-

base, HP UX, delete, memory, missing, problems, removed, add, added, changed,

problem, and test. Adding these words to the word-lists of exp2 and exp3 could
improve performance while ensuring they were only domain specific.

If the techniques used in exp2 and exp3 were combined with the supervised
techniques, we could reduce the training effort by boosting training sets with
topics classified with the semi-unsupervised techniques. Both Naive Bayesian
learners and the word-list approaches were computationally efficient. Low F-
measures and ROC scores are a concern for some of these techniques, perhaps
the word lists need to be re-enforced or made robust in the face of heavy
class imbalance. These results are promising because they indicate that these
techniques are accurate enough to be useful while still maintaining acceptable
run-time performance.

While this work focuses on labelling natural language commit log com-
ments, we feel it can be adapted to other natural language software artifacts,
such as mailing-list discussions and bug reports. Bug reports might not exhibit
the same behaviour as commits in terms of dominant topics.

5.4 Threats to Validity

Our work faced multiple threats to validity and we have attempted to address
them:

Construct validity – we used only commit messages rather than mail or bug
tracker messages. To extend further we would need matching repositories for
each project. Possibly they would have influenced our results, but there would
be a degree of correlation between the corpora. It is possible for a given label
to occur across the arbitrary 30-day boundary we set. We suspect but have not
proved that this is insignificant. Our taxonomy for software NFRs is subject
to dispute, but seems to be generally accepted. A future approach should
consider a different taxonomy, such as one created by surveying developers on
what “types” of tasks they work on. Finally, there are exogenous sources, such
as in-person discussions, which we did not access.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Automated Topic Naming 29

Our word-lists were built up of words that were assumed to be relevant to
those topics, our automated analysis was ignorant of the multi-uses of words
and thus topics could be flagged inappropriately. For instance, if the word
redundancy is used would it reference reliability or cloned code? This issue
is why we checked the performance of the techniques, although we did not
explicitly check for these cases.

Developer style is another confounding issue; if we are searching for words
in a word-list, we are relying on developers to use these words. This study
might be exploiting the behaviour or style of a few developers. If one devel-
oper did not describe their commits well or used fewer terms it is likely they
would be associated with a NFR topic regardless of the actual purpose of their
commits.

Internal validity – We improved internal validity by trying to correlate and
explain the behaviours observed in the analysis with the historical records of
the projects. We did not attempt to match our results to any particular model.

PostgreSQL was larger than MySQL and MaxDB. This imbalance in size,
combined with the choice of 20 topics per month produced topics that repre-
sented too many issues or threads within PostgreSQL’s development. Choice
of number of topics should probably be tuned to the project.

We primarily relied on ROC (the area under the receiver operating char-
acteristic curve), as our measurement to compare the effectiveness of semi-
unsupervised and supervised learners. ROC is less biased than F-Measure in
cross-folds validation [11,12] in the case of class imbalance. We feel that the
fixed point of 0.5 for random results allows us to better describe the pre-
dictability achieved by some of these techniques against random and ZeroR
learners. We also include F-Measure results to allow for the reader to validate
against F-Measure if they are more comfortable with it. Thus because of F-
Measure’s biased handling of class-imbalance and the inherent class-imbalance
that our data suffers from we chose ROC.

One potential issue with some of our results is that we often achieved very
low ROC and F-Measure scores. Performance was not uniformly low, as the
more common classes often exhibited better performance than the more rare
classes. Often this was amplified by class imbalance. In our future work we plan
to investigate techniques such as sub-sampling and boot-strapping in order to
improve performance. Some of the ROC performance could be due to a lack of
coherence in tagging which was shown by our low inter-rater reliability score.
Inter-rater reliability is a threat, and we discussed it in Section 5.2.

External validity – Our data originated from OSS database projects and thus
might not be applicable to commercially developed software or other domains.
Furthermore, our analysis techniques rely on a project’s use of meaningful com-
mit messages, although we feel this is the most frequently occurring form of
developer comments. While we tried to control for application domain variabil-
ity, OSS projects investigated were database systems, thus our results might
not generalize well to other domains. Generalizability is enhanced by the fact

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



30 Abram Hindle et al.

that all three projects were maintained by different developers and different
teams using different development processes.

Reliability – each annotator, the first two authors, followed the same protocol
and used the same annotations. However, only two annotators were used; their
annotations exhibit some bias as suggested by the weak inter-rater reliability
for PostgreSQL. Inter-rater reliability could not be checked for MySQL and
MaxDB because annotators did not rate the same documents. This is discussed
at length in Section 5.2.

5.5 Future Work

There are several avenues of further investigation. More external validation
would be useful. Although we validated our comparisons using a mailing list
for each project, interviews with developers would provide more detail. We
also think multi-label learning techniques, although in their infancy, are crucial
in understanding cross-cutting concerns such as NFRs. We want to leverage
different kinds of artifacts to discover threads of NFR-related discussions that
occur between multiple kinds of artifacts. Finally, we would like to extend
this analysis to other domains, to see what patterns might occur within those
domains, such as consumer-facing software products.

6 Conclusions

This paper presented a cross-project data mining technique, labelled topic
extraction. Previous topic analysis research produced project-specific topics
that needed to be manually labelled. To improve on this, we leveraged soft-
ware engineering standards, specifically the ISO9126 quality taxonomy, to pro-
duce a method of partially-automated (supervised) and fully-automated (semi-
unsupervised) topic labelling. Since the word-list technique is not project-
specific, we used it to compare three distinct projects, where we showed our
technique produced interesting insight into maintenance activity.

We validated our topic labelling techniques using multiple experiments.
We first conducted semi-unsupervised labelling using word-lists. Our next ap-
proach was supervised, using single-label and multi-label learners. Both kinds
of learners performed well with average ROC values between 0.6 and 0.8.
These results were confounded by our low inter-rater reliability score on the
PostgreSQL data-set, suggesting that annotators need careful and thoughtful
training. With appropriate rigor in annotation, these results, along with the
performance of our learners, demonstrate that labelled topic extraction can
be a promising approach for understanding the occurrence of non-functional
requirements in software projects.

Our data and scripts are available at http://softwareprocess.es/nomen/

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Automated Topic Naming 31

References

1. Baldi, P.F., Lopes, C.V., Linstead, E.J., Bajracharya, S.K.: A theory of aspects as
latent topics. In: Conference on Object Oriented Programming Systems Languages and
Applications, pp. 543–562. Nashville (2008)

2. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet Allocation. Journal of Machine
Learning Research 3(4-5), 993–1022 (2003). DOI 10.1162/jmlr.2003.3.4-5.993

3. Bøegh, J.: A New Standard for Quality Requirements. IEEE Software 25(2), 57–63
(2008). DOI 10.1109/MS.2008.30

4. Boehm, B., Brown, J.R., Lipow, M.: Quantitative Evaluation of Software Quality. In:
International Conference on Software Engineering, pp. 592–605 (1976)

5. Chung, L., Nixon, B.A., Yu, E.S., Mylopoulos, J.: Non-Functional Requirements in
Software Engineering, International Series in Software Engineering, vol. 5. Kluwer
Academic Publishers, Boston (1999)

6. Cleland-Huang, J., Settimi, R., Zou, X., Solc, P.: The Detection and Classification of
Non-Functional Requirements with Application to Early Aspects. In: International
Requirements Engineering Conference, pp. 39–48. Minneapolis, Minnesota (2006). DOI
10.1109/RE.2006.65

7. Ernst, N.A., Mylopoulos, J.: On the perception of software quality requirements during
the project lifecycle. In: International Working Conference on Requirements Engineer-
ing: Foundation for Software Quality. Essen, Germany (2010)

8. Fawcett, T.: An introduction to ROC analysis. Pattern Recognition Letters 27(8), 861
– 874 (2006)

9. Fellbaum, C. (ed.): WordNet: An Electronic Lexical Database. MIT Press (1998)
10. Few, S.: Information Dashboard Design: The Effective Visual Com-

munication of Data, 1 edn. O’Reilly Media (2006). URL
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0596100167

11. Flach, P.: The geometry of roc space: understanding machine learning met-
rics through roc isometrics. In: Proc. 20th International Conference on
Machine Learning (ICML’03), pp. 194–201. AAAI Press (2003). URL
http://www.cs.bris.ac.uk/Publications/Papers/1000704.pdf

12. Forman, G., Scholz, M.: Apples-to-apples in cross-validation studies: pit-
falls in classifier performance measurement. SIGKDD Explor. Newsl. 12,
49–57 (2010). DOI http://doi.acm.org/10.1145/1882471.1882479. URL
http://doi.acm.org/10.1145/1882471.1882479

13. German, D.M.: The GNOME project: a case study of open source, global software
development. Software Process: Improvement and Practice 8(4), 201–215 (2003). DOI
10.1002/spip.189

14. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The
WEKA Data Mining Software: An Update. SIGKDD Explorations 11(1), 10–18 (2009).
URL http://www.kdd.org/explorations/issues/11-1-2009-07/p2V11n1.pdf

15. Hindle, A., Ernst, N.A., Godfrey, M.W., Mylopoulos, J.: Automated topic naming to
support cross-project analysis of software maintenance activities. In: International Con-
ference on Mining Software Repositories (2011)

16. Hindle, A., German, D.M., Holt, R.: What do large commits tell us?: a taxonomical
study of large commits. In: MSR ’08: Proceedings of the 2008 international working
conference on Mining software repositories, pp. 99–108. ACM, New York, NY, USA
(2008). DOI http://doi.acm.org/10.1145/1370750.1370773

17. Hindle, A., Godfrey, M.W., Holt, R.C.: Release Pattern Discovery via Partitioning:
Methodology and Case Study. In: International Workshop on Mining Software Reposi-
tories at ICSE, pp. 19–27. Minneapolis, MN (2007). DOI 10.1109/MSR.2007.28

18. Hindle, A., Godfrey, M.W., Holt, R.C.: What’s hot and what’s not: Windowed developer
topic analysis. In: International Conference on Software Maintenance, pp. 339–348.
Edmonton, Alberta, Canada (2009). DOI 10.1109/ICSM.2009.5306310

19. Software engineering – Product quality – Part 1: Quality model. Tech. rep., International
Standards Organization - JTC 1/SC 7 (2001)

20. Kayed, A., Hirzalla, N., Samhan, A., Alfayoumi, M.: Towards an ontology for software
product quality attributes. In: International Conference on Internet and Web Applica-
tions and Services, pp. 200–204 (2009). DOI 10.1109/ICIW.2009.36

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



32 Abram Hindle et al.

21. Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model
selection. In: International Joint Conference On Artificial Intelligence, pp. 1137–1143.
Toronto (1995). URL http://portal.acm.org/citation.cfm?id=1643047

22. Marcus, A., Sergeyev, A., Rajlich, V., Maletic, J.: An information retrieval approach to
concept location in source code. In: 11th Working Conference on Reverse Engineering,
pp. 214–223 (2004). DOI 10.1109/WCRE.2004.10

23. Massey, B.: Where Do Open Source Requirements Come From (And What Should We
Do About It)? In: Workshop on Open source software engineering at ICSE. Orlando,
FL, USA (2002)

24. McCall, J.: Factors in Software Quality: Preliminary Handbook on Software
Quality for an Acquisiton Manager, vol. 1-3. General Electric (1977). URL
http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA049055

25. Mei, Q., Shen, X., Zhai, C.: Automatic labeling of multinomial topic models. In: Inter-
national Conference on Knowledge Discovery and Data Mining, pp. 490–499. San Jose,
California (2007). DOI 10.1145/1281192.1281246

26. Mockus, A., Votta, L.: Identifying reasons for software changes using his-
toric databases. In: International Conference on Software Maintenance, pp.
120–130. San Jose, CA (2000). DOI 10.1109/ICSM.2000.883028. URL
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=883028

27. Scacchi, W., Jensen, C., Noll, J., Elliott, M.: Multi-Modal Modeling, Analysis and Val-
idation of Open Source Software Requirements Processes. In: International Conference
on Open Source Systems, vol. 1, pp. 1—-8. Genoa, Italy (2005)

28. Treude, C., Storey, M.A.: ConcernLines: A timeline view of co-occurring concerns. In:
International Conference on Software Engineering, pp. 575–578. Vancouver (2009)

29. Tsoumakas, G., Katakis, I., Vlahavas, I.: Mining multi-label data. In: O. Maimon,
L. Rokach (eds.) Data Mining and Knowledge Discovery Handbook, 2nd edn. Spring
(2010)

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 


