
Software Process Recovery: Recovering Process
From Artifacts

Abram Hindle
David Cheriton School of Computer Science

University of Waterloo
Waterloo, Canada

ahindle@swag.uwaterloo.ca

Abstract—Often stakeholders, such as developers, managers,
or buyers, want to find out what software development processes
are being followed within a software project. Their reasons
include: CMM and ISO 9000 compliance, process validation,
management, acquisitions, and business intelligence. Recovering
the software development processes from an existing project is
expensive if one must rely upon manual inspection of artifacts and
interviews of developers and their managers. Researchers have
suggested live observation and instrumentation of a project to
allow for more measurement, but this is costly, invasive, and also
requires a live running project. Instead, we propose an after the
fact analysis: software process recovery. This approach analyzes
version control systems, bug trackers and mailing list archives
using a variety of supervised and unsupervised techniques from
machine learning, topic analysis, natural language processing and
statistics. We can combine all of these methods to recover process
events that we map back to software development processes like
the Unified Process. We can produce diagrams called Recovered
Unified Process Views (RUPV) that are similar to the Unified
Process diagram, a time-line of effort per parallel discipline
occurring across time. We then validate these methods using
case studies of multiple open source software systems.

I. INTRODUCTION

Software Process Recovery is an attempt to recover the
underlying software development processes from the evidence
hidden within the artifacts that programmers leave behind.
Many stakeholders care about the recovery of software devel-
opment processes from a project. Managers care about what
their developers are doing and if the developers are following
a prescribed process. Employers care if they can document
these development processes in order to achieve certifications
like ISO 9000 [1] or a Capability Maturity Model (CMM)
rating [2].Those involved in the acquisition of a company
may wish to see how the product was made. Developers often
seek an awareness of the project they are working on and its
software development processes.

Our goal is to recover software development processes from
the software development artifacts that programmers leave
behind. We want to avoid modifying or instrumenting the
current existing practice, we want to rely upon the records that
are left behind rather than rely on the perceptions of developers
gleaned from interviews.

This kind of historical analysis of software development
serves multiple purposes: to recover and understand devel-
opment processes that occurred within a software project; to

reconcile the prescribed software development processes with
the observed software development processes; to elicit process
related information and developer behaviour from objective
artifacts without interviewing developers or relying on their
perception or judgement.

Thus we ask: is software process recovery feasible? Can
we recover the underlying software development processes of
a project by analyzing the artifacts that are left behind in an
automatic and semi-automatic manner?

We believe that there are many avenues for recovering
software development processes and that repositories such
as version control systems, mailing-list archives and bug
trackers are good places to start. These repositories are full of
interesting documents that are rich with time sensitive data,
source code and natural language based artifacts. Thus we
hypothesize that we can recover some software development
process information from these repositories by utilizing re-
search from the field of Mining Software Repositories (MSR).

II. PREVIOUS WORK

Our work relies heavily on the field of mining software
repositories (MSR) [3]. MSR is dedicated to exploiting and
understanding these artifacts of development and inferring the
relationships between them. Software process recovery is a
sub-field of MSR but closely related to process mining [4], the
extraction of business processes, and process discovery [5],the
application of process mining to software development. Soft-
ware process recovery effectively combines MSR work with
process mining and process discovery.

Much MSR research is based upon studying large sam-
ples of free/libre open-source software (FLOSS) projects.
Capiluppi et al. studied and measured the general characteris-
tics of FLOSS projects [6]. Herraiz et al. [7] and Mockus et
al. [8] took a more statistical approach, they extracted metrics
and summary statistics on huge collections of FLOSS projects.
Israel Herraiz et al. [9] applied time-series analysis using
ARIMA to model the number of changes over time.

Much development is about requirements and features.
Sometimes features or concepts can be automatically identified
from software artifacts. Research on formal concept analysis
and concept location [10], [11] has often utilized LSI or
semantic clustering [12],while topic analysis has used both
LDA and LSI [13], [14], [11]. For instance, Lukins et al. [14],



used LDA for bug localization. Grant et al. [15] have used
independent component analysis to separate topic signals from
source code.

With respect to software process recovery, Cook [5] used
Markov chains to describe the state transitions in a process
using process discovery. Jensen and Scacchi [16] attempted
a manual approach to process discovery, they mined web re-
sources to “discover workflows”. German manually mined pro-
cess documentation and mailing-lists in order to describe the
development processes of GNOME project developers [17].
Ripoche tried a more automatic approach and studied bug
tracker processes using state diagrams [18]. Zaidman et
al. [19] studied testing related development processes using
co-changes between source code and tests.

III. METHODOLOGY

Our goal is to demonstrate that software process recovery
is feasible, so we need to be able to demonstrate that:

• process is observable [20], [21], based upon the reposi-
tories we are studying;

• software development artifacts can be partitioned and
associated with various work flows such as implemen-
tation or testing, and this can be done manually or
automatically [20], [21], [22], [23], [24];

• the purpose of an artifact can sometimes be recovered
from itself based upon its own attributes [22], [23];

• the topics of change and development are partially ob-
servable [25], [26];

• generalizable topics exist within software development
projects [25], [26];

• a general overview of a software development process is
recoverable [24] using these techniques.

Thus for a project we have to identify iterations, releases and
tags [20], [21]; describe behaviour within a project at a certain
time [20], [21], [22], [23], [25], [26]; identify repeating and
consistent behaviour around events [20], [21]; show that some
FLOSS projects demonstrate concurrent and parallel effort
across disciplines [20], [21], [24].

If we can find topics or the purposes behind events we
can relate them to parts of the software development life
cycle: requirements [25], [26], [24] , design [25], [26] ,
implementation [22], [23] , testing [20], [21] , deployment [24]
, project management [24] , maintenance [20], [21], [24] , and
quality assurance [25], [26], [24].

The artifacts that relate to these various aspects of soft-
ware development and software development processes are
recoverable from repositories such as version control systems,
mailing-list archives and bug trackers. Thus we plan to mine
revisions and commits to source code, documentation, test
code, build system, and assets from version control systems
such as CVS, Bitkeeper, SVN, Fossil and Git. From bug track-
ers and mailing-list archives we mostly mine the discussions,
the threads of messages that developers and users leave behind.
Discussions are often unstructured and require different kinds
of natural language processing in order to tease out events that

are relevant to the development of the project and the de facto
software development processes.

IV. RESULTS

Much of the work in this PhD thesis has been previously
peer reviewed and published in multiple venues. Most of this
research was proposed and then evaluated via case studies.
Each of these works, which are components of the chapters
of the thesis, illustrated different methods to get different
information about software development processes out of the
artifacts of development.

A. Is process observable? Is there consistent behaviour?

In our work on release patterns [20], [21] we characterized
the software development processes of multiple database sys-
tems by observing how changes to source code, test code, build
system code and documentation reacted around release time.
Releases are very important events in a software project’s life
because they are an explicit process event: they indicate that
the current branch of the software is ready to be deployed
and executed. Releases are easy to mine manually whether by
checking documentation or inferring automatically via version
control tags. These releases are very important because they
are points in time where the developers agree that the project
has reached a certain milestone or stability point such that it
can be packaged for consumption. We found we could describe
the process around release time by breaking up revisions into
STBD changes: Source, Test, Build, Documentation. We found
that the behaviour of changes in these four revision streams
around release time was consistent internally to a project,
but inconsistent across projects. This internal consistency was
an indication that a software development process was being
followed by the project’s developers. This work also gave us
access to four valuable event streams that are process rich, but
also provided evidence of concurrent development effort.

B. Are there parallel or concurrent development efforts within
some FLOSS projects?

We have investigated, characterized, and classified large
changes in version control systems [22], [23]. We observed
that different kinds of maintenance activities occurred in
parallel with implementation changes. We found that for many
FLOSS projects implementation changes and maintenance
changes were occurring concurrently. We even refined these
results further and produced automatic systems that could
classify changes by their maintenance classification type.

C. Are topics of development evident in these repositories?

We investigated windowed developer topics [25], [26],
where we applied natural language processing and Latent
Dirichlet Allocation (LDA) to find local and global developer
topics, we found that the topics of change and development
are partially observable. We found that there was a great
amount of topic churn over time. Most topics, 80 to 90 percent,
never ever reoccurred and were quite local, many of the 10
to 20 percent of repeating topics did reoccur across most



of the project’s lifetime. In collaboration with Neil Ernst,
we investigated these topics further and in our “What’s in
a name?” study [26]; we found that many of these repeating
topics were related to non-functional requirements. The non-
functional requirements (NFRs) we investigated included: ef-
ficiency, reliability, maintainability, portability, usability and
correctness. What is interesting about this result is that we
took previous knowledge that software had these issues and
we found that tools like LSI and LDA could spot topics related
to these issues within a repository. NFRs occur across many
software projects. Most projects have to deal with multiple
NFRs. We also found that developer topics were more useful
when they were labelled and that topics lacked descriptive
power until they were labelled, named or interpreted by man
or machine.

D. Can we recover some of the software development pro-
cesses of a project?

Our work on Recovered Unified Process Views [24] (RUPV)
demonstrated an integration of MSR research and our work
in order to produce a summary of observable software de-
velopment process activities recovered from artifacts of soft-
ware development. We modelled our summary on the Unified
Process, based on the Unified Process diagram. The Unified
Process diagram illustrates how software development consists
of parallel and concurrent workflows (such as implementation,
requirements and design) over time, and at different times in
a project’s life-cycle there is a different amount of effort or
emphasis on certain workflows. For example it is assumed
at the start of a project’s life, that much effort is spent
requirements and design while in the middle of a life-cycle
a project is primarily being implemented, maintained and
deployed. The RUPVs showed that we could observe many
aspects of software development processes and show them
as parallel time-lines much like the Unified Process diagram.
These concurrent time-lines, with their differing proportions
of process events, would be representative of the underlying
software development process being followed by a project’s
developers.

Thus we were able to integrate MSR work and our own
work to successfully recover some aspects of software devel-
opment processes observed from artifacts that developers leave
behind.

E. Threats and Challenges

The three main issues that this research faces are the observ-
ability of process related events, the reliance on programmers
to annotate or describe their actions, and the use of case studies
to validate these techniques and methods.

Observability of process is an important issue facing this
research, as certain aspects of a project are often implicit or
unobservable. For instance face to face meetings are often
not recorded and cannot be extracted. As well some projects
have implicit requirements because they are meant to mimic
the functionality of existing products. We found that business
analysis and project management events were particularly hard

to recover from the artifacts that we analyzed [24]. The quality
of the data in the project affects the observability of the
software development processes that were used.

We rely on the artifacts that developers create. Developers
do not create these artifacts in order to enable research, these
artifacts are meant to help the development of a software
project. Thus the annotations used by programmers might not
be enough to determine their behaviour. Developer behaviour
can change over time, programmers can annotate and describe
their changes inconsistently. Thus much analysis depends on
the context, the programmers, and the culture of the project.

Our validations mostly consisted of case studies. Often
we would create training sets of data based on real data in
repositories, the classification of this data was done manually
by hand and using our own judgement. This implies that some
of these results might not be as generalizable as we hope thus
we have to approach each project distinctly and evaluate the
context of the project and the availability of its artifacts.

V. CONCLUSIONS

Software process recovery is the recovery of software de-
velopment processes from the artifacts that developers leave
behind when they develop software. Our thesis is that we
can recover software development process information from
artifacts found in version control repositories, mailing-list
archives and bug trackers.

We have motivated the need for software process recovery
as a cost effective, non-invasive and non-developer intensive
method of recovering software development process informa-
tion from existing projects, even dead projects, for a variety
of reasons and for a variety of stakeholders. Practical reasons
for software process recovery include certification for ISO
9000 or CMM, project management, developer awareness and
acquisitions. Stakeholders who could benefit from software
process recovery include: managers, new developers, investors,
buyers, and researchers.

Our main contribution is the leveraging of MSR research
to recover software development processes from software
repositories. From a research perspective, we have contributed
multiple ways of inferring the purpose of certain development
artifacts. In the previous sections we illustrated many methods
of automated and semi-automated software process recovery.
These techniques can be applied after the fact, they rely
on artifacts of software development rather than programmer
interviews. We have integrated many of these techniques into
Recovered Unified Process Views (RUPV) and published that
work [24].

We have many repositories to analyze: version control
systems, mailing-list archives and bug tracking systems. The
artifacts within these repositories are often fine grained and
lacking in summaries. One of the primary methods of this
work has been to summarize these artifacts whether by statis-
tics, case study, or classification. We classified revisions by
their file types associated with software processes (source
code, testing, documentation, build) [20], [21]. We classified
version control commits by their maintenance categories [22],



[23]. We classified bugs and mailing-list discussions by non-
functional requirements [25], [26], [24].

We were successful in recovering some software develop-
ment processes. By splitting revisions into source, test, build,
and documentation changes we could clearly see that within
a project there were a repeating release patterns [20], [21].
We could observe the breakdown of changes by maintenance
class [22], [23] and automate this classification [23]. We
observed that implementation changes still occur late in a
project’s life cycle. Also we observed that most developer
topics [25], [26] occur once but there are many topics which
reoccur across the lifetime of a project. We eventually found
that many of the recurrent topics were related to non-functional
requirements. We integrated much of our previous work and
were able to describe how different disciplines, such as
requirements or implementation, were being worked on in
different proportions across time [24].

Do our techniques work? Each technique was evaluated and
validated against multiple case studies. In most cases these
techniques have been published and peer-reviewed. Thus each
part is validated, leaving only the sum of the parts to be
truly validated. We attempted to validate the integration of
these techniques using the Recovered Unified Process Views
(RUPV) [24]. RUPV enabled us to make interesting observa-
tions about deployment and requirements related artifacts in
SQLite and FreeBSD case studies.

We proposed software process recovery. We proposed many
methods and techniques to recover specific aspects of software
development processes, we then integrated many of these
techniques to produce a general overview: Recovered Unified
Process Views. We are confident that the combination of these
proposed techniques and their integration confirms that we
can recover some software development processes from these
artifacts. This thesis is very preliminary work in the field of
software process recovery; there is much to do, and still much
MSR-related research to apply to software process recovery.

Acknowledgements: I thank my supervisors, Michael W.
Godfrey and Richard C. Holt, for all of their support.

REFERENCES

[1] D. Stelzer, W. Mellis, and G. Herzwurm, “A critical look at iso 9000 for
software quality management,” Software Quality Control, vol. 6, no. 2,
pp. 65–79, 1997.

[2] M. C. Paulk, B. Curtis, E. Averill, J. Bamberger, T. Kasse, M. Konrad,
J. Perdue, C. Weber, and J. Withey, The capability maturity model:
guidelines for improving the software process, M. C. Paulk, C. V. Weber,
B. Curtis, and M. B. Chrissis, Eds. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 1995.

[3] H. Kagdi, M. L. Collard, and J. I. Maletic, “A survey and taxonomy of
approaches for mining software repositories in the context of software
evolution,” J. Softw. Maint. Evol., vol. 19, no. 2, pp. 77–131, 2007.

[4] W. M. P. van der Aalst, B. F. van Dongen, J. Herbst, L. Maruster,
G. Schimm, and A. J. M. M. Weijters, “Workflow mining: A survey
of issues and approaches,” Data & Knowledge Engineering, vol. 47,
no. 2, pp. 237 – 267, 2003.

[5] J. E. Cook, “Process discovery and validation through event-data analy-
sis,” Ph.D. dissertation, Computer Science Dept., University of Colorado,
1996.

[6] A. Capiluppi, P. Lago, and M. Morisio, “Characteristics of open source
projects,” vol. 00. Los Alamitos, CA, USA: IEEE Computer Society,
2003, p. 317.

[7] I. Herraiz, J. M. Gonzalez-Barahona, and G. Robles, “Towards a
theoretical model for software growth,” in MSR ’07: Proceedings of
the Fourth International Workshop on Mining Software Repositories.
Washington, DC, USA: IEEE Computer Society, 2007, p. 21.

[8] A. Mockus, “Amassing and indexing a large sample of version control
systems: Towards the census of public source code history,” in Mining
Software Repositories, 2009. MSR ’09. 6th IEEE International Working
Conference on, May 2009, pp. 11–20.

[9] I. Herraiz, J. M. Gonzalez-Barahona, and G. Robles, “Forecasting the
number of changes in eclipse using time series analysis,” in MSR ’07:
Proceedings of the Fourth International Workshop on Mining Software
Repositories. Washington, DC, USA: IEEE Computer Society, 2007,
p. 32.

[10] A. Marcus, A. Sergeyev, V. Rajlich, and J. Maletic, “An information
retrieval approach to concept location in source code,” Reverse Engi-
neering, 2004. Proceedings. 11th Working Conference on, pp. 214–223,
Nov. 2004.

[11] D. Poshyvanyk and A. Marcus, “Combining Formal Concept Analysis
with Information Retrieval for Concept Location in Source Code,” in
International Conference on Program Comprehension, June 2007, pp.
37–48.

[12] A. Kuhn, S. Ducasse, and T. Girba, “Enriching reverse engineering with
semantic clustering,” Reverse Engineering, 12th Working Conference on,
pp. 10 pp.–, Nov. 2005.

[13] E. Linstead, P. Rigor, S. Bajracharya, C. Lopes, and P. Baldi, “Mining
concepts from code with probabilistic topic models,” in ASE ’07:
Proceedings of the twenty-second IEEE/ACM international conference
on Automated software engineering. New York, NY, USA: ACM, 2007,
pp. 461–464.

[14] L. H. E. Stacy K. Lukins, Nicholas A. Kraft, “Source code retrieval
for bug localization using latent dirichlet allocation,” in 15th Working
Conference on Reverse Engineering, 2008.

[15] S. Grant, J. R. Cordy, and D. Skillicorn, “Automated concept location
using independent component analysis,” in 15th Working Conference on
Reverse Engineering, 2008.

[16] C. Jensen and W. Scacchi, “Simulating an automated approach to
discovery and modeling of open source software development pro-
cesses,” in Proceedings of the Third Workshop on Open Source Software
Engineering ICSE03-OSSE03, May 2003.

[17] D. M. German, “Decentralized open source global software develop-
ment, the GNOME experience,” Journal of Software Process: Improve-
ment and Practice, vol. 8, no. 4, pp. 201–215.

[18] G. Ripoche and L. Gasser, “Scalable automatic extraction of process
models for understanding f/oss bug repair,” in Proceedings of the
International Conference on Software and Systems Engineering and their
Applications (ICSSEA’03), December 2003.

[19] A. Zaidman, B. V. Rompaey, S. Demeyer, and A. v. Deursen, “Mining
software repositories to study co-evolution of production & test code,” in
ICST ’08: Proceedings of the 2008 International Conference on Software
Testing, Verification, and Validation. Washington, DC, USA: IEEE
Computer Society, 2008, pp. 220–229.

[20] A. Hindle, M. Godfrey, and R. Holt, “Release Pattern Discovery via
Partitioning: Methodology and Case Study,” in Proceedings of the
Mining Software Repositories 2007. IEEE Computer Society, 2007.

[21] ——, “Release pattern discovery: A case study of database systems,” in
Software Maintenance, 2007. ICSM 2007. IEEE International Confer-
ence on, Oct. 2007, pp. 285–294.

[22] A. Hindle, D. M. German, and R. Holt, “What do large commits tell us?:
a taxonomical study of large commits,” in MSR ’08: Proceedings of the
2008 international working conference on Mining software repositories.
New York, NY, USA: ACM, 2008, pp. 99–108.

[23] A. Hindle, D. M. German, M. W. Godfrey, and R. C. Holt, “Automatic
classification of large changes into maintenance categories,” in Interna-
tional Conference on Program Comprehension, Vancouver, 2009.

[24] A. Hindle, M. W. Godfrey, and R. C. Holt, “Software process recovery
using recovered unified process views,” in Proceedings of the Interna-
tional Conference on Software Maintenance 2010 (ICSM 2010), 2010.

[25] ——, “What’s hot and what’s not: Windowed developer topic analy-
sis,” in International Conference on Software Maintenance, Edmonton,
Alberta, Canada, September 2009, pp. 339–348.

[26] A. Hindle, N. Ernst, M. W. Godfrey, R. C. Holt, and J. Mylopoulos,
“What’s in a name? on the automated topic naming of software mainte-
nance activities,” 2010, in submission: http://softwareprocess.es/whats-
in-a-name.


