
Release Pattern Discovery via Partitioning:
Methodology and Case Study

Abram Hindle, Michael W. Godfrey, Richard C. Holt
University of Waterloo

{ahindle,migod,holt}@cs.uwaterloo.ca

Abstract

The development of Open Source systems produces a
variety of software artifacts such as source code, version
control records, bug reports, and email discussions. Since
the development is distributed across different tool environ-
ments and developer practices, any analysis of project be-
havior must be inferred from whatever common artifacts
happen to be available. In this paper, we propose an ap-
proach to characterizing a project’s behavior around the
time of major and minor releases; we do this by partitioning
the observed activities, such as artifact check-ins, around
the dates of major and minor releases, and then look for
recognizable patterns. We validate this approach by means
of a case study on the MySQL database system; in this case
study, we found patterns which suggested MySQL was be-
having consistently within itself. These patterns included
testing and documenting that took place more before a re-
lease than after and that the rate of source code changes
dipped around release time.

1. Introduction

This paper describes an approach to analyzing open
source process information using the available version con-
trol system artifacts. In particular, we are interested in
release-to-release iterations of development, and so we ex-
amine the behavior of a project around the points of major
and minor releases.
The research questions we are investigating concern pro-

cess extraction: How can we infer details of the develop-
ment process from the available artifacts, such as the revi-
sions stored in version control? And how much of this can
be done automatically and reliably?
Automatic process extraction would allow managers to

audit the behaviors of their developers, to inform develop-
ers what their actual process looks like, and to educate new
employees. For example, if developers are supposed to be

following an eXtreme Programming approach, process ex-
traction could help ensure that programmers were following
a test-first methodology, and measure how often tests are
created or modified when existing code is re-factored.
However, automatic process extraction is a large and dif-

ficult problem, so we have limited our scope to the analysis
of the behavior of projects around the time of release. A
release often demarcates the end of one iteration from the
beginning of the next, and so is a natural place to focus our
studies on.
In this paper we will propose an approach to analyzing

the behavior of a project around release time. Then we will
apply this approach in a case study of MySQL’s behavior
around major and minor releases. Our approach is related
to much previous work in the field of software evolution,
software life-cycles and processes extraction.

1.1. Background

Over the years the software engineering discipline has
proposed various models for how to develop software, such
as the Waterfall model [8] and iterative approaches such as
the spiral model [1] and OMG’s Unified Process [4]. Most
of these processes have their roots in classical engineer-
ing. Having a defined process encourages repeatable results
and performance; in time, processes can be measured and
then optimized, as per the SEI’s Capability Maturity Model
(CMM) [9] aims.
Software development processes — also called software

development life cycle (SDLC) models — relate directly
to the idea of software evolution, which is the study of
how software changes over time [7]. SDLC models at-
tempt to tell us how software should be made. Software
evolution tells us how it was made. Software evolution is
also concerned with study and the measurement of change.
If one is to comprehend a system that changes over time
one should consider how the measurements of the system
change. Some software evolution metrics measure systems
before and after a change, as well as measuring change it-
self [5, 6, 3]. Our problem is: given the repository of a

1



project how do we reverse-engineer the software develop-
ment process from this data?
In the field of process discovery, the study of what soft-

ware development processes are being used and how practi-
tioners create software, Cook has described frameworks for
event based process data analysis [2]. Our work differs from
Cook’s; instead of attempting to insert sensors and monitors
into the development process as Cook did, we analyze the
data available to us and attempt to determine what happened
in the past. This is done by analyzing fine-grained changes
to version control systems (VCS), such as CVS [10].
Process extraction is important because it can help de-

termine the behavior of the programmers and their project
as well as the context of their revisions. This information
would be useful to new maintainers or developers joining a
project. As well it would be useful as a post-mortem tool
to determine which processes were successful. Cook used
process extraction to verify if programmers were following
their prescribed model, as the programmers worked on the
project. We want to recover the project’s behavior from the
version control repository data. In order to do so we first
need to agree on some basic terminology.

1.2. Terminology

In this section we will define some terms which we will
use throughout the rest of the paper. Version control sys-
tems (VCS) are repository-like systems such as CVS or
BitKeeper which control and store versions of a project’s
source code. They record changes to files, these changes
are called revisions which are committed to the VCS. We
consider a commit to be the act of submitting a set of revi-
sions to the version control system.
A release is a set of revisions that are bundled together

and then distributed as files to end-users, or simply repre-
sent the state of the software at the end of an iteration. A re-
lease occurs on the day when a new version of the software
is officially packaged for distribution. Releases are found
via tags with in the VCS, via notes in the project changelog
and even from the release packages on the project’s FTP
server. We distinguish between two main kinds of releases:
major releases and minor releases.
A major release indicates that there has been a substan-

tial change in the software, such as the change from Linux
kernel 2.4 to 2.6 or from MS Windows 2000 to MS Win-
dows XP.
A minor release indicates that less significant changes

have occurred from the previous release, such as Linux ker-
nel 2.4.23 to 2.4.24 or from MS Windows XP SP1 to MS
Windows XP SP2.
We note that the criteria used to distinguish between ma-

jor and minor releases depends on the project. If we refer to
all releases, this means that both major and minor releases

are included. A release revision is a revision made during
an interval around a release. If we are looking at a release
with an interval of a week before and after, that means any
revision that occurred within seven days before or after that
release is a release revision. Before release refers to an in-
terval of time immediately before a release. After release
refers to an interval immediately after a release. It is impor-
tant not to confuse releases and revisions, revisions are fine
grained changes while releases are collections of revisions
prepared for distribution.
For our analysis we partition the files in the version con-

trol system into four classes: source, test, build, and docu-
mentation. A revision belongs to a revision class based on
which class that their file is associated with:
Source revisions are revisions to source code files.

Source code files are identified by the file name suffixes
such as .c, .C, .cpp, .h, .m, .ml, .java,
etc. Note that source files might include files which are also
used for testing.
Test revisions are revisions to files that are used for test-

ing the project. Test files include regression tests, unit tests,
and other tests that may be added to the repository. Revi-
sions to files that are part of regression test and unit test
cases are considered to be test revisions. Generally, any file
that has test in its name is assumed to be a test file (al-
though there are obvious exceptions).
Build revisions are revisions to build files such as those

related with GNU Autotools (make, configure, automake,
etc) and other build utilities. Build files include files with
names such as configure, Makefile, automake, config.status,
or suffixes such as .m4, etc.
Documentation revisions are revisions to documentation

files, which include files such as README, INSTALL,
doxygen files, API documents, and manuals.
A release pattern is a behavior that occurs before or af-

ter a release. A release pattern includes behaviors such
as increased frequency of documentation revisions before
a release which drop off after the release, or even the fre-
quency of test revisions maintaining a constant rate during
the release. These patterns are primarily found by analyzing
a project’s release revisions (the revisions associated with
the releases of the project). Sometimes we analyze these
patterns using aggregate functions like a window function,
which is a function which takes an interval of values as in-
put and produces an output. For instance, per each day we
could sum up all the revisions during the preceding week,
this would be a window function.
Using our 4 revision classes we can extract and analyze

the project’s behavior and identify release patterns. We go
into further detail on the steps taken to analyze a project in
the next section (section 2). These concepts we discussed in
this section are consistently used throughout the rest of the
paper and the methodology.



2. Methodology

This section presents our methodology for analyzing re-
lease patterns of a project; we will present the steps in-
volved and then we will followup with an application of
our methodology in a case study (section 2.5). Our method-
ology relies heavily on the revision classes we discussed in
the previous section 1.2.
Our methodology can be summarized as: Extracting data

for revisions and releases (section 2.1); Partitioning the re-
visions (section 2.2); Grouping revisions by aggregation
and windowing (section 2.3); Producing plots and tables
(section 2.4); Analyzing summaries of the results (section
2.5).

2.1. Extracting Data for Revisions and Re-
leases

Firstly we choose a target project’s VCS and either mir-
ror the repository or download each revision individually.
From VCS’s such as CVS or BitKeeper we extract the re-
visions and sometimes release information. We will later
analyze this extracted data. Per each revision the mini-
mal information extracted includes the date of revision, the
name of the revised file and the author of the revision. In
section 3.2 we discuss that we use such extraction tools as
softChange for CVS repositories and bt2csv for Bit-
Keeper repositories.
The release is essentially a record of the time of when the

project was distributed or packaged for distribution. This
time is determined from the version control system tags,
project changelogs, manuals, and even the release date-
stamps found in the project’s FTP repository. Once extrac-
tion is complete we are ready to partition our revisions into
classes.

2.2. Partitioning the Revisions

Once we have extracted the data, we partition the set of
revised files into these four classes: source code, tests, build
scripts and documentation. The revisions are partitioned
based on how their files are partitioned. In principle, these
are disjoint classes, but in the work presented here, there is
some overlap between source code and tests.
We partition the revisions into their respective classes

mostly by suffix and if their names match. Usually test
files are classified as test because they are in a test direc-
tory, they have “test” in their pathname, or they have a test
related prefix or suffix. Documentation files are determined
much the same way. Suffixes help determine source files
and build files. One should audit the matched files and de-
termine which ones truly belong to each class as there are

sometimes false positives. If revisions are duplicated be-
tween branches we will evaluate each duplicate as a sepa-
rate revision.

2.3. Choose and Apply Aggregate and Win-
dow Functions

Our revision data is often quite variant and somewhat
messy to plot, to get a clearer picture of the trends involved
one often needs to aggregate or smooth the results. For in-
stance, revision frequency data is often exponentially dis-
tributed, meaning that points are highly variable and there
are lot of points that look like outliers but are a normal part
of development (see the distributions of the revision classes
of MySQL 5.1 from our case study in figure 2).
This means that a time line plot of the revisions is highly

variant and often messy to plot, this implies that we need
smoothing to help make trends more apparent to the eye
so that we can investigate and validate if those trends truly
exist in the data. Aggregate functions such as summation
over an interval, summation over a window, average over
a window, all smooth out the data and make trends more
visible. For an example of a smoothed plot see the figure 1
from the MySQL case study.
We have a choice between aggregating aggregates, av-

eraging aggregates or combining all the revisions and ag-
gregating them together. An example of this is to group all
of the revisions that occurred 1 week before a release to-
gether and analyze those results, the alternative would be
to analyze each release independent of each other and then
aggregate the independent results.

2.4. Plot and Analyze

We use graphs, plots and tables to help us understand the
release patterns of the project. Here is a key question that
we would like to answer: For each class of file, does the
frequency of revision increase (or decrease) preceding (or
following) the time of the revision?
To try to answer a question such as this, we plot the fre-

quency of revisions in a revision class leading up to and
following the release. We prepare our data, as suggested in
the previous section, by aggregating by a time period such
as hours or days. We then would compare the average of
the number of revisions in each period. We would do this
multiple times with different values for parameters such as
interval length or release type. We can generate plots of
the revision frequencies and linear regressions of these fre-
quencies. We can also make tables showing how the results
change when parameters like interval length change. If we
have too many results we might want to compound these
results by aggregation functions like majority voting or av-
erages to make them more readable and easily analyzable.



In our experiments with MySQL, as described in our
case study, we varied the length of the interval from 7 days
up to 42 days. We carried out linear regressions on the ag-
gregated frequencies for the before release and after release
intervals to help identify release patterns.
Given the previous steps in our methodology and given

the resulting plots and tables, the final step is to analyze
these tables and plots to help us understand the release pat-
terns. Our larger goal is to gain insight about the process of
software change. As we have mentioned this often requires
us to summarize the behavior of attributes of graphs and ta-
bles such that we can make general claims about behavior in
verifiable and definitive manner. We developed a summary
notation which we call STBD Notation, described below in
section 2.5, to help summarize trends of revisions before,
after and during releases.

2.5. STBD Notation

STBD Notation is a short form summary of the results
of a query much like Myers-Briggs Type Indicator (MBTI).
MBTIs are short form summaries of a person’s preferences
and what kind of personality they perceive they have, ex-
ample summaries of personalities include INTJ and INTP
(both are introverts but one is judgmental and the other per-
ceives). These short forms show the preference of the in-
dividual for each of the four dichotomies which are rep-
resented positionally in order by single characters: Extro-
version and Introversion (E/I), Sensing and intuition (S/N),
Thinking and Feeling (T/F), Judging and Perceiving (J/P).
STBD Notation is similar to MTBI, but is meant to sum-

marize comparisons and representations of values related to
revision classes. An example instance of STBD Notation
for comparing the average frequency of release revisions
would be S+T-B-D-; a ’+’ would indicate that revisions
were more frequent before a release and a ’-’ would indi-
cate revisions were more frequent after a release. Example
values represented include comparisons of the average fre-
quency of revisions before and after a release. We assign a
letter to each file class (S for source, T for test, B for build,
D for documentation). We order the class characters from
most frequent class to least frequent class: S, T, B, D.
The format of the summary is S*T*B*D*where * could

be ’+’, ’-’, ’=’ or ’?’. In the case of comparing the aver-
age frequency of release revisions (as we just previously
described), ’=’ would indicate the averages were very close
or the same and ’?’ would indicate we had no data. Of
course these four characters can be arbitrarily assigned de-
pending on the metric. The symbols ’+’, ’-’ and ’=’ are
particularly good at describing the direction of the slope for
a given interval.
We repeat the letters just to aid deciphering the summary

in case someone has forgotten the order. Alternatively the

Project Source Test Build Doc
MySQL 3.23 4220 1410 421 21
MySQL 4.0 11593 4936 1033 34
MySQL 4.1 31451 16430 2990 88
MySQL 5.0 45946 26373 3908 105
MySQL 5.1 52897 31389 4772 122

Table 1. Total Number of Revisions per class

 0

 500

 1000

 1500

 2000

 2500

-40 -30 -20 -10  0  10  20  30  40
Su

m
 o

f r
ev

isi
on

s

Day

MySQL 5.1 - test - Before and After - Major releases: 31 days, Flat windows of size 14

Sum of Releases per day Before
Sum of Releases per day After

Linear Regression of Before
Linear Regression of After

Figure 1. Windowed plot of Test revisions

letter prefix allows us to pick and choose what information
we want to show. For instance if we only care about change
we can omit those classes which did not change.
Example metrics and classes of metrics one could use

with this notation include: linear regression slopes, average
LOC per revision, average frequency of revision, relative
comparison of frequencies, the sign of a metric, concavity
of quadratic regression, etc.
An example case would be if we measured the number

of lines changed per class then compared the number before
a release and after a release. We could use ’+’ to mean if
more lines changed before the release, and we could use
’-’ if more lines changed after the release. If there were
more source lines before, more test lines before, more build
lines after and equal documentation lines we’d get a STBD
Notation value of S+T+B-D=.
In the next section we use our methodology of extract-

ing, partitioning, plotting, and analyzing on MySQL. Our
analysis of MySQL relies heavily on STBD Notation, en-
abling us to summarize our results, infer and investigate the
release patterns of MySQL.

3. Case Study of MySQL

For our case study we chose to study MySQL. MySQL
is an Open Source SQL RDBMS that is used by many other
applications and websites. We chose MySQL because it is



Project Major 7 days 14 days 31 days 42 days
MySQL 3.23 Major S+T-B-D= S-T+B-D+ S-T+B-D+ S-T+B-D+
MySQL 3.23 Minor S+T+B+D+ S+T+B+D+ S+T+B+D+ S+T+B+D+
MySQL 3.23 All S+T+B+D+ S+T+B+D+ S+T+B+D+ S+T+B+D+
MySQL 4.0 Major S-T-B-D= S-T+B-D+ S-T+B-D+ S-T+B-D+
MySQL 4.0 Minor S+T+B-D+ S+T-B-D+ S+T+B+D+ S+T-B+D+
MySQL 4.0 All S+T+B-D+ S+T-B-D+ S+T+B+D+ S+T-B+D+
MySQL 4.1 Major S+T-B-D= S+T+B-D+ S+T+B-D= S+T+B-D+
MySQL 4.1 Minor S+T+B+D+ S+T+B-D+ S+T+B-D+ S+T+B+D+
MySQL 4.1 All S+T+B+D+ S+T+B-D+ S+T+B-D+ S+T+B+D+
MySQL 5.0 Major S+T+B-D+ S+T+B-D+ S-T+B-D+ S+T+B-D+
MySQL 5.0 Minor S+T+B+D+ S+T+B-D+ S+T+B-D+ S+T+B+D+
MySQL 5.0 All S+T+B+D+ S+T+B-D+ S+T+B-D+ S+T+B+D+
MySQL 5.1 Major S+T+B-D+ S+T+B-D+ S-T+B-D+ S+T+B-D+
MySQL 5.1 Minor S+T+B+D+ S+T-B-D+ S+T-B+D+ S+T-B+D+
MySQL 5.1 All S+T+B+D+ S+T-B-D+ S+T-B-D+ S+T-B+D+

Table 2. A STBD Notation summary table of MySQL. S - source, T - test, D - documentation, B - build.
+ indicates that the preceding class of revisions are more frequent before a release than after.

Project Major Minor All
MySQL 3.23 S-T+B-D+ S+T+B+D+ S+T+B+D+
MySQL 4.0 S-T+B-D+ S+T?B?D+ S+T?B?D+
MySQL 4.1 S+T+B-D? S+T+B?D+ S+T+B?D+
MySQL 5.0 S+T+B-D+ S+T+B?D+ S+T+B?D+
MySQL 5.1 S+T+B-D+ S+T-B+D+ S+T-B?D+

Table 3. Summary of table 2 using majority
voting where ’?’ means no majority

relatively unstudied from a fine grained revision level per-
spective, although it has been studied from a release level
perspective before. Also, MySQL has a good number of
major and minor releases for us to study. MySQL is a large
software package that for maintenance reasons is split into
multiple branches. Each branch is one version of MySQL
(3.23, 4.0, 4.1, 5.0, 5.1) that is stored in a separate Bit-
Keeper repository. Note that new branches contain all the
revisions of old branches up to the point of the creation of
the newer branch. Some revisions, such as bug fixes are
shared between branches.

3.1. Assumptions

Our initial assumption is that we’ll see all 4 revision
classes increase in activity as they approach the release and
then drop off after release. We expect source and test revi-
sions to have a positive slope after release as bug fixes come
in.

3.2. Tools and Datasets

Our data was extracted from the MySQL BitKeeper
repositories for MySQL 3.23, MySQL 4.0, MySQL 4.1,
MySQL 5.0, and MySQL 5.1 (fetched 2006-07-26). We
used bt2csv to extract and convert the BitKeeper reposi-
tories to facts stored in a CSV database.
To analyze the data that was extracted we used: Hiraldo-

Grok, an OCaml based spin off of Grok used for answering
statistical based queries; R, a plotting and statistics package;
GNUPlot, a graph plotting package.

3.3. Applying our method

We extracted the release dates from the MySQL man-
ual, and we marked the first releases that were packaged
and released to the public as the major releases. The rest
of the releases were considered to be minor releases. We
then extracted each revision from the BitKeeper reposi-
tory with our bt2csv tool and produced some CSV files
and softChange databases. Once we had the revision
databases we used Hiraldo-Grok to partition the revisions
into their revision classes. These 4 classes of revisions were
then aggregated per day. Hiraldo-Grok then produced the
histograms of the revisions per day distributions.
Figure 2 shows the histogram of MySQL 5.1. The dia-

gram is a histogram of the the distributions of the 4 revision
classes. This diagram uses log scaling on the proportional y
axis, with bezier smoothing on the curves. Since it is a his-
togram the values are scaled proportionally. The histogram
is a 100 bin histogram, so the x axis is scaled for each class.
As we can see the distributions look very exponential for 3



 1e-04

 0.001

 0.01

 0.1

 1

 0  20  40  60  80  100

Pr
op

or
tio

n

Linearly increasing bins (100)

MySQL 5.1 Histogram (log)

SRC
TEST

BUILD
DOC

Figure 2. Distribution of revision classes for
MySQL 5.1

of the 4 revision classes. Only documentation is different,
partially because there are not a lot of documentation revi-
sions but also because there is a peak at the end of the of
the distribution, which implies that there are a rare few days
where documentation revisions are very frequent.
We then filtered out the revisions which were not within

our intervals around a release (intervals of 7, 14, 31, and
42 days) and then filtered the remaining revisions into be-
fore release revisions and after release revisions. Then
Hiraldo-Grok produced the necessary tables that allowed
R and GNUplot to plot our various graphs. These tables
were of the frequency of revisions per day per revision class
for release revisions. These results were aggregated by our
Hiraldo-Grok STBD Notation scripts to produce our sum-
mary table (table 2) and majority summary table (table 3).
We then used GNUPlot to calculate the linear regression of
the frequency of revisions and provided our Hiraldo-Grok
STBD Notation scripts with the slopes of the linear regres-
sions. Using those results we produced the linear regression
summary table (table 4).

3.4. Indicators of Process

Table 2 shows the results of comparing average frequen-
cies of revisions in intervals before and after a release,
where ’+’ indicates the frequency is greater before a release
and ’-’ indicates the frequency is greater after a release.
Table 3 using majority voting across all of the intervals in

table 2. Votes where there is no clear majority result in a ’?’
symbol otherwise the symbol with the majority is shown.
We produced the majority summary table to help average
out the noise we see between the measurements in table 2
at different intervals. Table 3 shows us that minor and ma-
jor releases act both similarly and differently. For example,
S+D+ is consistent across all of the minor release branches

Project Before After Both
MySQL 3.23 S-T+B+D+ S+T-B+D= S+T-B+D+
MySQL 4.0 S-T-B+D+ S+T-B+D= S+T-B+D-
MySQL 4.1 S+T+B-D+ S+T+B+D= S+T+B+D+
MySQL 5.0 S-T-B+D- S-T-B+D= S-T-B-D-
MySQL 5.1 S-T-B-D- S-T-B-D= S-T-B-D-

Table 4. Linear Regressions of daily revisions
class totals: + indicates a positive slope, - in-
dicates a negative slope, = indicates a slope
near 0 (Major releases, 42 day interval)

 0

 20

 40

 60

 80

 100

 120

 140

-40 -30 -20 -10  0  10  20  30  40

R
ev

is
io

ns
 p

er
 d

ay

Days

MySQL 3.23, Major Releases 42 day interval

MySQL 3.23 Counts Before Release
MySQL 3.23 Counts After Release

Linear Regression of Before Release Source Revisions
Linear Regression of After Release Source Revisions

Figure 3. MySQL 3.23 Linear Regression on
Source files of Major Release

where as it is only consistent across half of the major release
branches. B- is consistent for major releases but inconsis-
tent for minor releases. Perhaps build revisions are more
frequent during minor releases than during major releases.
An interesting observation (table 3) is that T+D(+/=) is
common among all the MySQLs which suggests that in the
MySQL process documentation and testing are done more
before a release than after.
Figure 1 depicts a smoothed plot of test revision fre-

quency around release time combined with 2 linear regres-
sions of the before and after release revisions aggregated by
a flat window function with a window size of 14 days. The
window function in this case is a summation over 14 days
starting at the current day. We can see that the slope is nega-
tive and there are more test revisions before the release than
after. This behavior correlates to the results in tables 2, 3
and table 4 described below.

3.5. Linear Regression

Table 4 shows the sign of the slope of the linear regres-
sion of the revision frequency for the revision classes. The



releases used were the major releases and the interval was
42 days (the both column uses an interval of 84 days). These
slopes were calculated by GNUplot and then Hiraldo-Grok
summarized the results using STBD Notation. A negative
before slope and a positive after slope indicates a concave
up shape in the revision rate, while a positive before slope
and negative after slope indicate a concave down shape or
a peak around the release. If both before and after are posi-
tive it suggests that the rate is increasing, although it doesn’t
mean that the after rate is greater than the before rate. Only
if the result across the release (both) is positive does it im-
ply a continuously increasing rate. We can see that docu-
mentation revisions increase before a release and then drop
off. There doesn’t seem to be much documentation after a
release.
Figure 3 shows the aggregation of revisions before and

after each release and the linear regression of the plot. The
general shape of the frequency of source revisions across
the release seems to be a downward slope or a concave up
curve with the minima near the release. The later versions
of MySQL seem more consistent across the releases with a
more subtle slope.

3.6. Discussion

This method enables us to explore the release patterns of
MySQL. We can now make claims about MySQL’s release
patterns and back up our claims with actual data. We can
reason about the process MySQL uses (we would need to
analyze more projects before we could make general claims
about software). We can say that build revisions occur more
frequently after a major release than before. We can show
that revisions to documentation files occur more frequently
before releases (major or minor) than after releases. We can
show a general downward slope of the frequency of source
revisions across a major release. We can show a general
trend that testing occurs more before release than after. The
STBD Notation helps us reason about release patterns by
summarizing the results down a single analyzable result.
Our assumptions in section 3.1 were partially off. For

major releases, source revision patterns and build revision
patterns are not consistent with our initial assumptions. Test
and documentation classes were consistent though. As per
the shape of the graph, we assumed a concave down shape
but it was in fact a concave up shape for source revisions.
An interesting release pattern observed is that our linear

regression results for source revisions indicate there is a dip
and rebound for source revisions around release. Perhaps
this indicates a temporary freeze is taking place and the de-
velopers are doing last minute fixes and manual testing to
prepare the project for release.
If we look at table 3 we see that MySQL versions 3.23 to

5.1 transition from S- to S+. Using table 4 we can see that

from MySQL 3.23 to 4.1 the slope across the release (both)
was positive. Perhaps this indicates that releases are han-
dled differently between the versions or the development
process of MySQL evolved over time. Maybe in earlier
versions more bug reports came back immediately after a
release thus prompting patching. According to the release
history a minor release immediately preceded the first ma-
jor release of MySQL 3.23 by 4 days. Perhaps immediate
patching was required and those source revisions were com-
mitted to the VCS. Given that testing was decreasing yet
source and build revisions were increasing it is doubtful new
features were being added, perhaps maintenance patches for
other architectures that the maintainers don’t use, but devel-
oped for, were added. Build files are changed more after a
release than before, perhaps this indicates that there is some
stability before a release and that new features which would
affect the configuration of the project are held off till after a
release.
Given that source revision frequency often increases

across a release while test revisions decreased we can prob-
ably conclude that the behavior of MySQL does not indicate
that test driven development or test-first development was
taking place. If that were the case one might expect tests
to mirror the source changes. Testing and source commits
don’t seem to be heavily correlated around release time.
Documentation seems to be sporadically done before the

release as documentation revisions drop off immediately af-
ter release. This behavior seems to indicate that documen-
tation is not focused on after a release, and this might sug-
gest that documentation files are updated primarily before a
release, especially minor releases where we see consistent
behavior.

4. Validity Threats

Our four main threats to validity are: deciding when a
release occurred and the severity of that release (major or
minor); whether or not that branching into separate reposi-
tories affected our results; the statistical significance of our
results with respect to number of revisions, projects and re-
leases; choosing an appropriate interval length for analysis.
Our interpretation of a major or minor release might

differ from what the developers consider a major or mi-
nor release. For instance, we consider the internal release
of MySQL 4.0.0 a minor release whereas the publicly dis-
tributed release that follows it that was considered the major
release. A solution would be to ask the developers directly
or to rely on information in the mailing list discussions.
The MySQL repositories are the major release branches

of MySQL. Every repository was forked off from a previous
repository. Yet even as the repositories lived on as mainte-
nance forks, bug fix revisions from different branches were
passed around between each other. A possible solution to



this ambiguity would be to combine all the revisions from
all the branches into one set and analyze that.
We might have issues with bias and statistical signifi-

cance. We don’t have many major releases, and some re-
leases don’t have many revisions thus in some cases we
might not have enough data to have statistically significant
results. Table 2 suggests that our choice of interval length
seems to affect the results somewhat. We attempted to solve
this problem by using the majority summary table (table
3) and averaging results. Unfortunately this could’ve been
biased by our interval length choices; each consecutively
larger interval contains the previous smaller interval.
We have shown that we are concerned about validity but

our method does enable us to talk about what happened
based on actual evidence stored within the project’s VCS.

5. Conclusions

Our work is an initial step towards automated process
extraction from version control systems: we started by an-
alyzing revisions around releases, partitioning those revi-
sions and then further reasoning about release patterns via
the interaction of the revision classes.
We provide a method of partitioning revisions into

source code revisions, test revisions, build revisions and
documentations revisions in order to better characterize re-
lease patterns. We provide a method to characterize the re-
lease patterns of a project and we demonstrate this on a case
study of the branches of MySQL.
We can see that by partitioning the revisions into differ-

ent classes such as source and testing we can make claims
about the behavior of developers and their projects. We
can claim and back up our claim that for a project such
as MySQL, that documentation and testing occur more be-
fore a release than after. By splitting the revisions into re-
visions associated with one kind of behavior (testing, build-
ing, coding, documenting) we gain a clearer picture of the
actual release patterns. We can see if developers prepare for
a release by testing, documenting, adding code or modify-
ing build files. We demonstrated our methodology with our
case study of MySQL where we found both consistent and
inconsistent release patterns between branches.

5.1. Future Work

Future work that would rely on our methodology of par-
titioning revisions could include a study of non-release revi-
sions. If we can correlate behavior during non-release time
and release time we can better model the project’s behavior.
We should evaluate the interaction of authors with re-

spect to revision classes. We should answer questions such
as: do authors practice test-first programming; do they com-
mit tests just after commits; when do authors document the

project; can we characterize an author’s roles or behavior
from their revisions?
Different analysis techniques such as text mining and

clone detection could be used to infer even more infor-
mation. Is there a general difference architecturally be-
tween major and minor releases? Major and minor release
revisions should be analyzed with respect to architectural
change.
We cannot make any global generalizations since we

have only studied one project. We will need to analyze
many more project repositories before our results are statis-
tically significant enough to allow us to generalize globally
about Open Source software processes and project behavior.

References

[1] B. Boehm. A spiral model of software development and
enhancement. SIGSOFT Softw. Eng. Notes, 11(4):14–24,
1986.

[2] J. E. Cook and A. L. Wolf. Automating process discovery
through event-data analysis. In ICSE ’95: Proceedings of
the 17th international conference on Software engineering,
pages 73–82, New York, NY, USA, 1995. ACM Press.

[3] D. M. German and A. Hindle. Measuring fine-grained
change in software: towards modification-aware change
metrics. In Proceedings of 11th International Software Met-
rics Symposium (Metrics 2005), 2005.

[4] I. Jacobson, G. Booch, and J. Rumbaugh. The unified soft-
ware development process. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA, 1999.

[5] M. Lanza and S. Ducasse. Understanding software evolution
using a combination of software visualization and software
metrics. In Langages et Modles Objets (LMO 2002), pages
135–149, 2002.

[6] T. Mens and S. Demeyer. Evolution metrics. In IWPSE ’01:
Proceedings of the 4th International Workshop on Principles
of Software Evolution, New York, NY, USA, 2001. ACM
Press.

[7] A. Mockus, R. T. Fielding, and J. Herbsleb. Two Case Stud-
ies of Open Source Software Development: Apache and
Mozilla. ACM Transactions on Software Engineering and
Methodology, 11(3):1–38, July 2002.

[8] W. W. Royce. Managing the development of large soft-
ware systems: concepts and techniques. In Proceedings of
the 9th International Conference on Software Engineering,
pages 328–339. IEEE Computer Society Press, Mar. 1987.

[9] C. C. M. University. The capability maturity model: guide-
lines for improving the software process. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1995.

[10] T. Zimmermann and P. Weisgerber. Preprocessing CVS data
for fine-grained analysis. In 1st International Workshop on
Mining Software Repositories, May 2004.


