Release Pattern Discovery:
A Case Study of Database Systems

Abram Hindle, Michael W. Godfrey, Richard C. Holt
University of Waterloo
{ahindle,migod,holt} @cs.uwaterloo.ca

Abstract

Studying the release-time activities of a software project
— that is, activities that occur around the time of a ma-
jor or minor release — can provide insights into both the
development processes used and the nature of the system it-
self. Although tools rarely record detailed logs of developer
behavior, we can infer release-time activities from available
data, such as logs from revision control systems, bug track-
ing systems, etc. In this paper, we discuss the results of a
case study in mining patterns of release-time behavior from
the revision control systems of four open source database
systems. We partitioned the development artifacts into four
classes — source code, tests, build files, and documentation
— to be able to characterize the behavioral patterns more
precisely. We found, for example, that there were consis-
tent activity patterns around release time within each of the
individual projects; we also found that these patterns did
not persist across systems, leading us to hypothesize that
the four projects follow different but consistent development
patterns of activity around releases.

1. Introduction

In this research we attempt to discover release patterns,
that is, behavioral patterns of software projects that can be
observed around the time of a release. We theorize that re-
lease patterns constitute a discernible slice of larger-scale
patterns concerning developer behavior, in that they provide
evidence of the actual processes and practices followed by
the project members. In turn, we expect release patterns to
provide the observer with useful and accurate information
about the particular release-time processes being followed.
We observe and extract these patterns from the software ar-
tifacts available for use. Since many of the development de-
cisions and behaviors are not regularly logged, we rely on
systems that automatically log activity, such as a project’s
Version Control System (VCS).

Ever since the Cathedral and Bazaar [10], there has
been interest from businesses, developers, managers, and
researchers about how Open Source Software (OSS) is cre-
ated. Previous attempts at investigating the development
processes of Open Source Software (OSS) have analyzed
Bugzilla repositories and mailing-lists [4]; these artifacts
do not offer the fine granularity of activity records that revi-
sions, from a VCS, provide. We hope to extract this behav-
ior so that stakeholders in the project have a way to extract
and analyze the behavior that is reflected within the source
control repository.

Given that many software processes are composed of
stages we suspect we can better observe a system’s behav-
ior by looking for changes or revisions that are related to
stages of software development. For example maintenance
and implementation stages are related to changes in source
code files; integration and test stages are related to changes
of test files, benchmarks, test framework code, build files
and configuration management files; requirements, specifi-
cation and design stages are related to changes in documen-
tation files.

In this research we will study the release patterns of
several Open Source Software (OSS) Database Systems
(RDBMSs). Many OSS RDBMSs started as proprietary
software either commercially or academically. Each has a
long history of use and change. We have chosen the domain
of database systems, as we believe it to be both mature and
fairly stable, and we expect that the individual systems will
likely have similar architectures or provide a similar func-
tionality which might help us compare them.

This work, when incorporated into a more general frame-
work, can help people such as managers and programmers.
It supports managers in analyzing project behavior around
events such as releases. It supports the extraction of de-
velopment process information from projects, and so aids
managers in verifying what practices the programmers are
following. This also permits managers a freer hand in the
project development, since it frees them from having to
keep a close watch on what the developers are actually do-
ing day-to-day. For example our work can be used to deter-

mine when documentation or testing occurs around an event
or if activities such as coding and testing occur at the same
time.

Programmers could investigate how their project is be-
ing maintained. Newcomers to the project could determine
the process followed by the programmers and figure out
the work flow of the project. Programmers could also ask
the repository, relative to events, when documentation took
place.

Researchers could benefit by correlating the behavior of
successful projects, there by deriving successful software
development processes. Researchers could also validate the
behaviors of developers against the software development
process that the developers claimed they were following.

This work does not analyze all of the project’s behavior,
it analyzes the project’s behavior around release time. In
this paper we look explicitly for a common behavior among
all of the projects, since they are all databases systems, we
conjectured that their release-time practices might be simi-
lar.

1.1. Background

The stages of software development we want to iden-
tify are derived from various software development mod-
els such as the Waterfall model [11], the Spiral model [1]
and OMG’s Unified Process [7]. Example stages include:
requirements, design, implementation, documentation, test-
ing, release, etc. Depending on the software development
model, stages are followed linearly (Waterfall), or itera-
tively (OMG UP and Spiral Model). The recursive mod-
els are split into smaller iterations. Each iteration mixes
together relevant stages much like mini-waterfall models.
These iterative models are often called “evolutionary mod-
els”, as the process elicits feedback from previous iterations
to enable the software to react to changes in requirements
or design.

Software evolution is the study of how software changes
over time [5] based on the artifacts left behind by devel-
opers. These artifacts include mailing lists, change-logs,
program releases, source code, version control systems, re-
visions, etc. These artifacts often need to be measured or
aggregated to be studied. Common software evolution met-
rics include lines of code, clean lines of code (no comments
or extra whitespace), number of lines changed, lines added,
lines removed, etc. Some software evolution metrics mea-
sure systems before and after a change, as well as measuring
change itself [9, 8, 5].

Process discovery and extraction is the study of how to
determine the process or behavior a project is following ei-
ther by tooling the development process [3] or by analyzing
the software artifacts, such as revisions [6].

Our work is a case study of multiple Open Source sys-
tems. There have been many cross project studies of Open

Source systems such as those by Capiluppi et al [2] and
Mockus et al [9]. Our work differs from Capiluppi et al.
because we investigate in detail the development history of
a few projects around release-time where as Capiluppi et
al. provides summary statistics for over 400 OSS projects.
Mockus et al. have also studied release time behaviour
of the Apache and Mozilla projects to investigate the pro-
cess, team structure, and programmer roles. Their work
measured post-release defect density, whereas our research
studies change frequency.

1.2. Terminology

This section introduces terminology that we use through-
out the rest of this paper.

Version control systems (VCSs) track and maintain the
development and revision history of a project. VCSs are
repositories which store revisions to files such as source
code and documentation. In this study we used CVS and
BitKeeper.

Revisions are changes to files stored in a VCS. They are
not the actual files themselves but the changes that occur
between versions of a file.

Commits are the actions taken that add, submit or record
revisions to the VCS.

Releases are the events where software is bundled for
distribution. Usually when a version of the software in VCS
is decided to be the release, it is checked out and packaged.
There are two kinds of releases: major releases and minor
releases.

Major Releases are releases which are large changes to
the software that often affect the software’s architecture.
Generally developers will indicate a major release by us-
ing a large change in their version numbering of a release
(e.g. MS Windows 95 to MS Windows 98 or Linux Kernel
2.2t02.4).

Minor Releases are generally smaller than major releases
and are usually indicated by a smaller change in the version
number of a release (e.g. MS Windows XP SP1 to MS Win-
dows XP SP2 or Linux Kernel 2.4.19 to 2.4.20).

All releases include both major and minor releases.

Release revisions are revisions that are near a release
(e.g., one week). Given an interval around a release, a re-
lease revision is a revision that occurs within that interval.

A partition is one of the four sets of files stored in a VCS
that we analyze: source, test, build, and documentation.

Revision classes are the sets of revisions to files in our
file partitions (source, tests, etc.).

Source revisions are revisions to source code files.

Test revisions are revisions to files that are used for test-
ing the project. Test files include regression tests, unit tests,
and other tests that may be added to the repository.

Build revisions are revisions to build files such as those
associated with GNU Auto-tools (make, configure, au-

Project Major | Minor | All
Firebird 5 5 10
MaxDB 7.500 | 1 12 | 13
MaxDB 7.600 | 2 11 12
MySQL 3.23 | 2 68 | 70
MySQL 4.0 4 110 | 114
MySQL 4.1 4 110 | 114
MySQL 5.0 4 110 | 114
MySQL 5.1 4 110 | 114
PostgreSQL 7 27 | 34
Total 33 563 | 595

Table 1. Total number of releases per project
(Note MaxDB and MySQL fork their reposito-
ries so each repository contains most of the
releases)

Project Source Test | Build | Doc
Firebird 40737 7727 | 3183 | 534
MaxDB 7.500 | 10369 4270 298 52
MaxDB 7.600 | 23456 7087 318 97

MySQL 3.23 4220 1410 421 21

MySQL 4.0 11593 4936 1033 34
MySQL 4.1 31451 16430 | 2990 88
MySQL 5.0 45946 | 26373 | 3908 105
MySQL 5.1 52897 | 31389 | 4772 122
PostgreSQL 39153 4906 | 7172 | 3084
Total 259822 | 104528 | 24095 | 4137

Table 2. Total Number of Revisions per class
per project

tomake, etc.) and other build and configuration utilities.

Documentation revisions are revisions to documentation
files, which include files such as README, INSTALL,
doxygen files, API documents, and manuals.

Project behavior is the behavior of the revisions stored
within the project’s VCS.

Release patterns are the patterns of project behavior that
are observed around a release.

2. Methodology

This section presents our methodology for analyzing re-
lease patterns of a project; we will present the steps in-
volved and then we will followup with an application of
our methodology in a case study (section 3). Our project
analysis methodology can be summarized as: extracting
data for revisions and releases; partitioning the revisions
into their revision classes; grouping revisions by aggrega-
tion and windowing; producing plots and tables; analyzing

summaries of the results with our STBD notation (see sec-
tion 2.1). For a more detailed description of our methodol-
ogy please see [6].

We extract revision data from the various repositories us-
ing softChange, CVSSuck and bt2csv as described in
section 3.2. We then mine mailing-lists, change-logs, man-
uals, and repository tags for release information. The re-
lease information we extract includes the version number,
the date, and whether the release is a major release or not.

We partition the revisions into their four revision classes
based on the files they are associated with. This is primarily
done by checking extensions and substrings of their path-
names. If necessary, one can create a list of files in each
partition.

We aggregate and group our revision class partitions for
plotting and analysis. Aggregates include averages, summa-
tions and windowed functions. In this study we aggregated
the revisions by day and filtered the revisions into per-day
bins before and after release for a given interval.

Using the aggregated and partitioned data we then plot
various graphs such as revision frequency before and after
a release, and the linear regression of changes before and
after a release. From these plots we generate summaries of
the slopes of the linear regression or other aspects of the
graphs themselves. These summaries often use the STBD
notation which we describe in detail in section 2.1. We then
analyze the summaries and try to discover release patterns
from the data and our summaries.

Once these steps are done, for each project analyzed we
compare and contrast the summaries of the projects to de-
termine if they have a similar relative behavior.

2.1. STBD Notation

We introduce the STBD notation as a notation to summa-
rize the results of metrics on our four classes of revisions.
We assign a letter to each revision class (S for source, T for
test, B for build, D for documentation). We order the class
letters from most frequent class to least frequent class: S,
T, B, D.

The format of the summary is S*T*B*D* where *
could be characters such as ¥ (down/before), [l(equals), A
(up/after). Generally we try to choose intuitive mappings
for these characters, for instance V¥, A, and [] map well to
the slope of a line (such as the linear regression of a set
of points). A and ¥ work well for comparing two values,
much like less than and greater than. In this paper when we
compare two metrics such as revision frequency before and
after a release, ¥ means the revision frequency was greater
before a release, and A means the revision frequency was
greater after a release.

An example instance of STBD notation would be,
SYTVBADL! for revision frequency before and after a re-
lease; this would indicate source and test revisions were

more frequent before the release, SVTV, while build revi-
sions were less frequent before, BA, and documentation re-
visions were equally frequent, DL]. We can also omit classes
that we are not interested in or did not change. For example
if only source revisions changed or we only want to focus
on source revisions we could show only SA.

This notation is very flexible and allows us to identify
patterns and make quick judgments based on actual data,
the repetition of the class letters helps readers avoid mem-
orizing the ordering. Metrics we can use with STBD nota-
tion include: linear regression slopes, average LOC per re-
vision, average frequency of revision, relative comparison
of frequencies, the sign of a metric, concavity of quadratic
regression, etc.

3. Case Study

In this case study we study four OSS databases: Post-
greSQL, MySQL, Firebird and MaxDB. We start with ini-
tial questions and predictions. We then apply our method-
ology, as discussed in section 2, and then analyze and com-
pare these projects.

3.1. Questions and Predictions
For each revision class, we ask these questions:

e Are revisions of this class more frequent before or after
arelease?

o [s the frequency of change increasing or decreasing be-
fore or after a release?

As a general trend, we expected most projects to obey
SYTV. That is, we expect to see more code and testing
added just before a release than just after. We also expected
few if any build changes just before a release, as they usu-
ally correspond to the addition of new — and therefore risky
— features in code. That is, we expected most projects to
obey BL] or BA.

3.2. Tools and Datasets

We used a set of extractors on various datasets and then
analyzed the extracted data with our analysis tools.
Extractors we used include: CVSSuck is a tool that
mirrors RCS files from a CVS repository; softChange
extracts CVS facts to a PostgreSQL database; bt2csv con-
verts BitKeeper repositories to facts in CSV databases.
Datasets we used include: Postgresql (CVS), Firebird
(CVS), MaxDB 7.500, 7.600 (CVS), MySQL 3.23, 4.0, 4.1,
5.0,5.1 (BitKeeper). Summaries of the number of releases
and revisions per class are shown in tables 1 and 2.
Analysis tools we used include: Hiraldo-Grok (an
OCaml based variant of Grok used for answering queries),
R (a plotting and Statistics Package), GNUplot (a graph
plotting package), and Octave (an OSS Matlab clone).

We selected four successful OSS RDBMSs to base our
study on. Two of the RDBMSs originally started in uni-
versities (Postgresql and MySQL) while two were gifted
from commercial companies to the Open Source Commu-
nity (Firebird and MaxDB). Of those RDBMSs, we used
multiple forks of the databases (MySQL and MaxDB) pri-
marily because their major release branches did not share
the same VCS repositories.

The database domain was chosen for study as instances
of this domain implement highly similar functionality, and
rely on a large body of well known ideas and experience.
That is, we expected them to have some architectural traits
in common, at least at the coarsely grained level, and this
makes them good candidates for comparison. Additionally,
these projects are relatively mature and thus have automated
tests, benchmarks and developer documentation, so there
are many kinds of artifacts to study.

4. Results

In this section we show and discuss our results from
many different viewpoints. We measured the revision fre-
quency and change of the revision frequency of our four
revision classes for each of the four different RDBMS. We
then analyzed these measurements from multiple perspec-
tives.

We have plotted much of the data and provided it in
a summarized form. We evaluated this data from various
perspectives and viewpoints such as release types, interval
length, project, revision classes, and the linear regression
of the frequencies of revision classes. We also evaluate our
assumptions and discuss the validity threats that face our
analysis.

4.1. Indicators of Process

Our results indicate there was no global consistency
across revision classes, across all projects, but that there
was some consistency within the individual projects (see ta-
ble 3). This consistency suggests that each of the projects
observed regular patterns of behaviors — that is, they were
following a process — but that different projects followed
different processes.

One indicator of process that seemed extractable was
how test revisions could relate to the test methodology used
by the project. Looking at MySQL 3.23 to 4.1 we can
see that source revision activity increased across the re-
lease (table 6) while test revision activity decreased (it had
a negative slope after release as well). This suggests that
source revisions were not heavily correlated with test revi-
sions. PostgreSQL and Firebird’s test revisions seemed to
change in the opposite way of their source and build revi-
sions. MaxDB, on the other hand, had correlated release
patterns between source and test revisions. This suggests

Project Major Minor All
Firebird SVTABVDA SYTVBADY SVTABVDA
MaxDB SPITYBYD] | STITABZID?] | SZTITPIBZIDY
MySQL SYVIVBADY | SVIVBPZIDY | SVTVBPIDY
PostgreSQL | SATABADA SATVBYDA SATVBADA

Table 3. Summary of the four major project’s revision frequencies before and after a release with
majority voting across the branches, where ?; is when no majority is found, ¥ means revisions are
more frequent before, A means revisions are more frequent after. S - source, T - test, B - build, D -
documentation

Project Major 7 days 14 days 31 days 42 days
Firebird Major | SATYBVDA | SYTABYDY | SVTABVDA | SYTABVYDA
MaxDB 7.500 | Major | SYTVYBVDY | SYTVBVYDY | SYTVBVDY | SYTVBVDY
MaxDB 7.600 | Major | SATABYDL] | SATVBYDY | SATVBADA | SVYTVBVYD[]
MySQL 3.23 Major | SYVTABADL] | SATVBADY | SATVBADY | SATVBADYV
MySQL 4.0 Major | SVTVBADL] | SYTVBADY | SVTVYBADY | SYTVBADY
MySQL 4.1 Major | SVTABADL] | SYTVBADY | SYTVBADL] | SYTVBADA
MySQL 5.0 Major | SYTVBADY | SVTVBADY | SATVBADY | SYTVBADA
MySQL 5.1 Major | SYTVBADY | SVTVBADY | SATVBADY | SYTVBADA
PostgreSQL Major | SYTABADY | SATABADA | SATABADA | SATABADA
Project Major 7 days 14 days 31 days 42 days
Firebird Minor | SYTVBADY | SVTVBADY | SYTYBADY | SVTVBADYV
MaxDB 7.500 | Minor | SYTABVDA | SYTABYDA | SATABVDA | SATABADA
MaxDB 7.600 | Minor | SATABADY | SATABADY | SATABADA | SATABADY
MySQL 3.23 Minor | SYTYBYDY | SVTVBVDY | SVTVBYDY | SVTVBVDY
MySQL 4.0 Minor | SYTVBADY | SVTABADY | SYTYBYDY | SVTABVDY
MySQL 4.1 Minor | SYTYBYDY | SVTVBADY | SYTYBADY | SVTVBVDY
MySQL 5.0 Minor | SYTVBYDY | SVTVBADY | SYTYBADY | SVTVBVDY
MySQL 5.1 Minor | SYTVBYDY | SYTABADY | SVTABVYDY | SVTABVDYV
PostgreSQL Minor | SVTVBYDA | SATABADA | SATVBYDA | SATVBVDA
Project Major 7 days 14 days 31 days 42 days
Firebird All SVIVBVDA | SVTABVDY | SVTABVDA | SVTABVYDA
MaxDB 7.500 | All SVIVBVYDY | SVTVBYDY | SVIVBYDVY | SATABVYDYV
MaxDB 7.600 | All SATABVDY | SATABADY | SATABADA | SYTVBYDY
MySQL 3.23 All SVIVBYDY | SVIVBYDY | SVIVBYDY | SYTVBYDV
MySQL 4.0 All SVIVBADY | SVTABADYVY | SVTVBVYDY | SVTABVDY
MySQL 4.1 All SVIVBVYDY | SVTVBADY | SVTVBADVY | SYTVBVYDV
MySQL 5.0 All SVIVBVYDY | SVITVBADY | SVIVBADVY | SYTVBVYDV
MySQL 5.1 All SVIVBVYDY | SVTABADY | SVTABADVY | SVTABVYDY
PostgreSQL All SVIVBVDA | SATABADA | SATVBADA | SATVBADA

Table 4. A STBD notation summary table of project revision frequencies across release types, and
interval lengths.

Project Major Minor All
Firebird SVTABVDA | SVIVBADVY | SVTABVDA
MaxDB 7.500 | SVTYBVDY | SZITABVDA | SVIVBVYDY
MaxDB 7.600 | SATVBVYD[L] | SATABADY | SATABZIDVY
MySQL 3.23 SATVBADY | SVTVBYDVY | SVTVBVDY
MySQL 4.0 SYVIVBADY | SYIZIBPIDY | SVIZIBZIDVY
MySQL 4.1 SVTVBADL] | SYTYBZIDY | SVTVBZIDY
MySQL 5.0 SVIVBADY | SVIVBPIDY | SVIVBPIDVY
MySQL 5.1 SVTVBADY | SVTABVDV | SVTABIDV
PostgreSQL SATABADA | SATVBVDA | SATVBADA

Table 5. Summary of table 4 using majority voting where ?; means no majority

that MySQL, Firebird, and PostgreSQL did not follow a
test-driven development model, or that testing was done at a
different time in the process, yet MaxDB followed a release
time process or pattern in which test and source changes are
correlated.

4.2. Linear Regression Perspective

We used the STBD notation to describe the results of
multiple linear regressions of revisions per day before, after
and during a release (table 6) with before and after intervals
of 42 days.

Notable release patterns found from the linear regres-
sions were: SYTV for the before slopes were common for
All releases for every project except for MaxDB 7.6; a slope
of BY was common among before intervals for Minor re-
leases and All releases.

After release summaries for All and Minor releases were
very similar with the most notable change in build files for
MySQL. Before release patterns of SATA were consistent
with after patterns of SYTV for MySQL 4.1 to 5.1 and Post-
greSQL. This indicates there was a concave up peak around
release time. Peaks and dips around release time are in-
teresting because they seem to indicate that an event that
changes behavior occured.

In the Both interval the most consistent pattern was BV
for Minor and All releases and the opposite for Major re-
leases (BA). The BA pattern matches with the summaries
in table 5. For all releases and all intervals, except Major
After and Major Both, we observed BY for build revisions.
This suggests that build revisions are probably less common
around release time than during the non-release time. We
observed there was almost a freeze in build changes around
a Major release as if features which include new files or
compilation changes were being held back.

4.3. Release Perspective

We can see from table 5 and table 3 that there was a
definite difference in behavior between Major and Minor
releases per each project and across projects. These tables

summarize the average frequency before and after release.
Source revision behavior seemed relatively consistent be-
tween Major and Minor releases, except for MySQL 3.23
and MaxDB 7.500.

Tests were quite different for all projects other than
MySQL 3.23, 4.1 and 5.0. Test release patterns were dif-
ferent between Major and Minor releases. For Firebird,
MaxDB and PostgreSQL, Major and Minor test patterns
were completely opposite to each other. Firebird and Post-
greSQL modified tests more frequently before a Minor
release than after, where as for MaxDB and for all the
MySQLs tested more often before a Major release than af-
ter; yet for Minor releases test release patterns were the op-
posite of MaxDB and were inconsistent for MySQL.

Projects with inconsistent build release patterns were
Firebird, MaxDB 7.600, MySQL and PostgreSQL. Only
Firebird and MaxDB had BVfor Major releases yet mostly
BA for Minor releases. MySQL and PostgreSQL seemed
to change build files more before Minor releases rather than
Major releases.

A general release pattern of PostgreSQL, that was con-
sistent across all releases, was that there were more revi-
sions to PostgreSQL after a release than before, except for
the one week interval. Perhaps this indicates that Post-
greSQL follows a process that relies on code freezes or a
delay of patches till after a release.

The differences between Major and Minor releases
seemed similar between projects but were mostly notice-
able in MaxDB 7.5. The differences between Major and
Minor releases seemed more prevalent than differences be-
tween intervals.

4.4. Interval Length Perspective

Tables 4, and 7 both provide summaries of data orga-
nized by interval. The one week interval in table 4 showed
that Major and Minor releases seem to act quite differently,
but when combined, A/l releases had more changes before
release than after. The week before release generally had
more activity than the week after. We can confirm this in

table 7, where we see only for one release of MaxDB and
the Major releases of Firebird, were there more revisions
during the week after release than before. Yet for Major
releases of projects such as MySQL and PostgreSQL there
were more build revisions after a release than before.

Another interesting release pattern related to one week
intervals was that documentation had the most equally fre-
quent results (MaxDB 7.6 and MySQL 3.23 to MySQL 4.1).
These equally frequent results suggest there were not a lot
of revisions to documentation during the Major releases (al-
ternatively, the behavior was stable). The longer the interval
was, the more noticeable and trackable the documentation
revisions became. This was most likely due to the infre-
quency of documentation revisions.

Some projects have shown some stability across inter-
vals, such as the pattern of PostgreSQL for intervals of
14 days or greater for Major releases, and the pattern of
MySQL 3.23 for Minor and All releases, for all intervals
plotted in table 4. MySQL 3.23 was also somewhat consis-
tent for Major releases beyond the one week interval. Some
projects went through a slow transition of behaviors from
one interval to the next.

This interval based analysis lends itself to per-project
analysis since there was inconsistency between projects.

4.5. Project Perspective

Probably the most notable perspective is the per-project
perspective: the results are generated internally from a
project, and show consistency within a project.

Firebird’s shape for source revisions around Major re-
leases was a concave up dip in frequency around release
time followed by a rise; for Minor releases its source re-
vision frequencies had a concave down shape where the
frequency peaks around the release. The opposite behav-
ior was observed for test revisions. Source revisions were
consistently more frequent before a release across all re-
lease intervals. It seemed that Firebird was generally docu-
mented around the time of Major releases rather than Minor
releases.

The MaxDB branches are particularly interesting be-
cause the behavior between branches is often inconsistent
or directly opposite. For Major releases MaxDB had con-
sistent revision frequencies of TVBVY. The linear regression
of Major revisions, for the both interval and the before inter-
val, were consistent and downward sloping; Minor releases
inconsistently displayed the opposite behavior for every-
thing except documentation revisions. For All releases, all
intervals and every revision class, except documentation, of
MaxDB 7.5 had the opposite slope of MaxDB 7.6.MaxDB
7.5 did not have many revisions immediately after release.
Perhaps there were not enough MaxDB revisions but the na-
ture of development could have changed from adding new
functionality to maintaining the code.

The MySQL branches are not totally consistent but they
show a transitioning consistency through their branches. In
general MySQL followed SYTVYDYV for revision frequency;
build revisions followed a B Apattern for Major releases, but
otherwise were often inconsistent. According to table 2 we
can see that the proportion of test revisions to source revi-
sions grew to over 5 : 3, therefore testing within MySQL
seems very important. Slopes of SATA before and SATA
after, and SATA before and SVTV after were observed for
MySQL’s Minor and All releases. The shape of the curve
for source and test revisions around release time for MySQL
was a general upward slope or a concave down peak.

PostgreSQL was the only project to have more build re-
visions than test revisions. For Minor and All releases, for
all revision classes except documentation, PostgreSQL had
a concave down peak at release (e.g. slopes of SATABA to
SYTVYBY). For Major releases, PostgreSQL had a concave
up dip for source, build and documentation revisions and
had a concave down shape for test revisions. For the both
interval, there was a positive slope for all revision classes
except for tests. PostgreSQL seemed to have the most em-
phasis on frequent change after release; PostgreSQL’s be-
havior seemed most indicative of the kind of project that
uses code freezes before release.

4.6. Revision Class Perspective

Source revisions were the most common revisions of all
the revision classes. For most intervals and all releases (Ma-
Jjor, Minor, All) source revisions were usually more frequent
before a release than after. Only for MaxDB 7.6 and Post-
greSQL were source changes more frequent after a release
than before. For all projects, it seems that source revi-
sion frequency almost returned to an equilibrium during the
42 day window. Overall, slope of the linear regression of
source revisions was inconsistent across Major and Minor
releases. For All releases, source revisions have a consis-
tent positive slope before release, the slope usually changed
after release.

Test revisions were the second most numerous kind of re-
vision across all of the projects. For Minor releases and All
releases, tests were usually more frequent before a release
than after. For Minor releases the slope of the frequency
change across the release was positive. Major releases had
a negatively sloped test revision frequency across all inter-
vals. Whereas across Minor and All releases, tests had a
concave down peak around release time. For Firebird and
PostgreSQL, tests were more frequent after a Major release,
where as for MaxDB and MySQL they were often more
frequent before release. For Minor releases we observed
the opposite behavior for all projects except MySQL. Tests
seemed to be correlated with the frequency of revisions be-
fore and after release.

Build revisions were the third most frequent revisions for

all projects except PostgreSQL. For Minor releases build re-
visions were negatively sloped across the release where as
for Major releases they were positively sloped across the re-
lease, and dipped down around release time. Perhaps build
revisions were more likely after a Major release because
new functionality was added that required more configura-
tion changes. Build revisions seemed to be inconsistently
frequent for all releases, but had a more consistent negative
slope across Minor releases.

Documentation revisions were the least frequent revi-
sions for all projects except PostgreSQL. The frequency of
documentation revisions indicated that they were changed
more often before a release rather than after, which sug-
gests that documentation was left until the functionality was
frozen so that it could be described. Major releases of Fire-
bird, and all releases of PostgreSQL had documentation
changes that were more frequent after release than before.
Documentation revision frequencies were the most likely to
be equal across a release mainly due to the lack of docu-
mentation revisions. The shape of documentation revisions
around Minor releases was usually a dip, but this was in-
consistent for All and Major releases.

Source, test and documentation revisions seemed to be
related and often mimicked each other in frequency, but
usually not in slope near release time. Build revisions
seemed to be the most at odds with the behavior of other
revision classes, and were the most likely to be more fre-
quent after release. Documentation revisions were the most
likely to be missing after release because they were the least
frequent.

4.7. Answers to Our Questions

For each class of revision, are revisions in that class more
frequent before or after release? We answered this question
from section 3.1 based on our frequency tables (tables 5 and
4).

Source revisions, in general, were changed more fre-
quently before a release than after. There were exceptions
such as the early MySQLs, MaxDB 7.600 and PostgreSQL.
This suggests projects developers are probably finalizing
the project for release and fixing as much as possible before
the release. Projects that had more source changes after re-
lease might save large risky changes until after the release.

Test revisions were usually more frequent before either a
Major or Minor release than after. This suggests that testing
is often done to verify that a project is ready for release.

Build revisions, for Major releases were usually
changed more after a release than before; the opposite was
true for the Minor releases for all projects, except for Fire-
bird and MaxDB 7.600. Large changes that would require
changes to build files are probably saved for after a ma-
jor release, as one would expect a major release to stabilize
functionality. Where as a minor release might be prompted

by adding a new feature.

Documentation revisions were changed more before re-
lease than after for MySQL and MaxDB; Firebird and Post-
greSQL displayed the opposite behavior for Major releases.
Documentation changes are probably related to new func-
tionality, thus since source changes are changed more af-
ter a major release for a project, documentation is probably
changed at the same time. In general though, one could
expect documentation to change more before a release be-
cause the functionality has solidified and thus can be docu-
mented.

Is the frequency of change increasing or decreasing as
we approach a release? To answer this question we rely on
the linear regression results from table 6.

Source revision frequency had a consistent before re-
lease behavior (SV) for Minor and All releases, but was
inconsistent for Major releases. For Major releases only
PostgreSQL and some MySQL branches had SA across the
release. Consistent patterns found were: both intervals had
SV (downward slopes), and both intervals had SA slopes
and concave down dips. Source releases generally increased
before a release except with Major releases.

Test revision slopes were TV across Major releases, and
T A across Minor releases. The slope across All releases was
inconsistent across the projects.

Build revision slopes for some MySQL and PostgreSQL
Major releases, increased across the release (BA). Post-
greSQL’s Major release build revisions formed a concave
up shape. For Firebird and MaxDB the general trend was
BVY. For Minor and All revisions PostgreSQL had a con-
cave down peak around release.

Documentation revision activity increased across the
release (DA) for both Firebird and PostgreSQL. After a
release, documentation revision frequency often had a flat
slope, which indicated that there was no documentation ac-
tivity after a release for most projects except Firebird, Post-
greSQL and MaxDB 7.600.

Thus we can see that due to the differences between
projects there was usually no clear consensus on what each
revision class does, but per project, as we saw with MaxDB
and MySQL, there was some internal consistency between
branches.

Overall, we found our prediction of S¥ was consistent
for all projects except MaxDB 7.600, MySQL 3.23 and
PostgreSQL (table 5). Also, our prediction of TV revision
frequency was common for both MaxDB databases and all
Major releases of MySQL, although MaxDB’s Major re-
leases were inconsistent with their Minor and All releases.
Build revisions before Major releases occurred more of-
ten after release than before for MySQL and PostgreSQL;
this is consistent with the hypothesis that structural changes,
such as the addition of new features, were rare just before
major releases. However, for Minor and All releases the

general trend was that build revisions were either inconsis-
tent or were more frequent before release. Finally, we found
that many of our predictions were not borne out by the data;
in particular, we did not expect to find such inconsistency
between the projects.

4.8. Validity Threats

We studied four Open Source RDBMSs. While these
cover all of the major systems in this category, it is not at
all clear that any results can be further generalized to other
RDMBs or to Open Source systems in general.

Our six main threats to validity were: deciding if a re-
lease was a major release or a minor release; determining if
branching seen in MySQL and MaxDB affected our results;
determining if we had enough revisions per aggregate to
be statistically significant; deciding on an appropriate inter-
val length; comparing the projects against each other based
on their internal measurements; whether or not the linear
regression is appropriate for time series data such as this.
None of the projects were within a single stage of develop-
ment, it was a mixture of stages.

5. Future Work

Future work will entail studying more projects, applying
more analysis techniques, evaluating the data from different
perspectives, and investigating non-release time patterns.

This work needs to be expanded upon to study various
internal events like branching, tagging, merging and exter-
nal events. We need to be able to apply this analysis not
only to events but across an iteration of the project such
that we can characterize the various behaviors and possible
stages of software development a project undergoes during
an iteration.

More projects should be analyzed in order to achieve
some kind of statistical significance so we can generalize
our results about OSS release patterns. We will probably
need at least 40 projects before we can generalize about
OSS processes and release patterns. Other perspectives
from which we could evaluate include: the distributions,
the authors, the files, co-changes, forks, branches and other
events.

We need to do some frequency analysis to see if there are
any periodic events which would affect linear regressions.
Other work includes creating a deployable tool that extracts,
analyzes, and produces reports about a project, and then to
see if these results are useful to developers.

6. Conclusions

Through the application of our methodology on four
OSS RDBMSs, and the partitioning of revisions into four
classes (source, test, build, and documentation) we ob-

served that release patterns exist within projects, although
these patterns are not necessarily observed across projects.

One of the observed release patterns is that the frequency
of source revisions generally decreases across a release.
This might indicate that at release time, developers divert
their file updating efforts to activities such as packaging and
distribution, which are not recorded in the VCS repository

The fact that release behavior differs from project to
project suggests that the projects we studied follow different
processes and/or have different properties.
Acknowledgments: This research was partially funded by
a NSERC PGS Scholarship.

References

[1] B. Boehm. A Spiral Model of Software Development and
Enhancement. SIGSOFT Softw. Eng. Notes, 11(4):14-24,
1986.

[2] A. Capiluppi, P. Lago, and M. Morisio. Characteristics
of Open Source Projects. In CSMR ’03: Proceedings of
the Seventh European Conference on Software Maintenance
and Reengineering, page 317, Washington, DC, USA, 2003.
IEEE Computer Society.

[3] J. E. Cook and A. L. Wolf. Automating Process Discovery
through Event-Data Analysis. In ICSE ’95: Proceedings of
the 17th international conference on Software engineering,
pages 73-82, New York, NY, USA, 1995. ACM Press.

[4] D.M. German. Decentralized Open Source Global Software
Development, the GNOME experience. Journal of Software
Process: Improvement and Practice, 8(4):201-215, 2004.

[5] D. M. German and A. Hindle. Measuring Fine-grained
Change in Software: Towards Modification-aware Change
Metrics. In Proceedings of 11th International Software Met-
rics Symposium (Metrics 2005), 2005.

[6] A.Hindle, M. Godfrey, and R. Holt. Release Pattern Discov-
ery via Partitioning: Methodology and Case Study. In Pro-
ceedings of the Mining Software Repositories 2007. IEEE
Computer Society Press, May 2007.

[7] L Jacobson, G. Booch, and J. Rumbaugh. The Unified Soft-
ware Development Process. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA, 1999.

[8] T.Mens and S. Demeyer. Evolution Metrics. In IWPSE ’01:
Proceedings of the 4th International Workshop on Principles
of Software Evolution, New York, NY, USA, 2001. ACM
Press.

[9]1 A.Mockus, R. T. Fielding, and J. Herbsleb. Two Case Stud-
ies of Open Source Software Development: Apache and
Mozilla. ACM Transactions on Software Engineering and
Methodology, 11(3):1-38, July 2002.

[10] E. S. Raymond. The Cathedral and the Bazaar: Musings
on Linux and Open Source by an Accidental Revolutionary
(O’Reilly Linux). O’Reilly, October 1999.

[11] W. W. Royce. Managing the Development of Large Soft-
ware Systems: Concepts and Techniques. In Proceedings of
the 9th International Conference on Software Engineering,
pages 328-339. IEEE Computer Society Press, Mar. 1987.

0 Jo adojs e sajeoipul [‘adojs annebau
e sajeolpul A ‘ado|s aanisod e sajeaipul v :(jeasaiul Aep gp)
s|ejo} ssejo suoisinal Ajlep jo suoissaibay Jeaul "9 a|qel

‘aseajol e 19)Je SUOISIASI 810w Sa)edIpul Vv ‘oseajal e
210J9(] SUOISINSI 910W S3JEIIPUl A "9SEIJd] B Ja)je pue a10joq
SUOISIA®] JO Joquinu [e}o} Jo abeiane jJo uosiedwo? *2 ajqel

€S0V | FS0V | (090)V | (I+'0)A v TOS218150d AJAIVIAS | YAVEVIVS | VOASALAS v | T0S2151s04
(67°0)A | (67°0)A | (67°0)A | (87°0)A nv 'S TOSAN VAVIALYS | AQVIVIVS | VAVIALAS v 'S TOSAIN
(87°0)A | (87°0)A | (87°0)A | (L¥'0)A nv 0'S TOSAN VAVIVIVS | AQVIVIVS | YVOVIALAS v 0'S TOSAN
(87°0)A | (87°0)A | (87°0)A | (SF'0)A v 'y TOSAN VAVIVIVS | AQVIVIVS | YVOVIALAS v 't TOSAIN
(87°0)A | (9F'0)A | (LF0)A | (SF0)A nv 0¥ TOSAIN VAVIALAS | ACASGAIAS | ACVEALAS v 0t TOSAIN
(€r'0)A | (0'0)A | (9¢'0)A | (CE0)A IV | €2°¢ TOSAN AQVIVIVS | ACAGAIAS | ACVIAIAS v | €2°¢ TOSAN
(Ly0)A | (LSO)VY | (S9°0)V | (S90)V [V | 009'L 9axeN VAVIVLVS | AQVIVIVS | VAVIVIVS v | 009°'L 9axen
(SSO)Y | (T¢0)a | (OT0)A | (90°0)A IV | 00S'L 9axeN AJAGAIAS | ACASGAIAS | ACASAIAS IV | 00S'L ddXeN
(87°0)A | (St'0)A | ISTO)Y | (LE0)A v PIIQaIT] AQVIAIAS | ACAIVIAS | AOVIAILAS v PIIQaTL]
skep ¢ | sAep 1€ | sAep 1 | shep L Joleln 19lo1g ylog YV a10jog JolelN 100lo1g
0507 | (ZS0Y | (650 | (0OV'0)A | IoUN | TOSITIS0d AQVIVIAS | VAVAVIVS | VOASALAS | Jouljy | TOSe181s0d
(0S'0)A | (0S0)A | (67°0)A | (87°0)A | TOUTIN 'S TOSAIN VAVIALYS | AQVEVIVS | VAVIALAS | JOUIN 'S TOSAIN
(87°0)A | (87°0)A | (87°0)A | (L¥'0)A | JOUT 0'S TOSAN VAVIALYS | AQVEVIVS | VAVEALIAS | JOUTN 0'S TOSAIN
(87°0)A | (87°0)A | (8%°0)A | (SH'0)A | Joury 't TOSAN VAVIALYS | AAVEVIVS | VAVEALIAS | JOUTN 't TOSAN
(87°0)A | (9F0)A | (L¥'0)A | (SH0)A | JoUTN 0¥ TOSAN VAVIAIAS | AOVIAIAS | ACVEAIAS | JOUTN 0t TOSAIN
(€A | Gv0)A | (LEO)A | (TE0)A | JoutN | ¢7°¢ TOSAN AJVIALVS | AOVIALAS | ACVIALAS | IoUlN | €7°€ TOSAN
150V | (LSOY | (99°0)Y | (99°0)Y | IOUIA | 009'L IAXEIN AQVIVIVS | AQVIVIVS | VAVAVIVS | IOUN | 009 L dAXeN
(€8'0)VY | (ZL0O)Y | (0S0)Y | (6¥°0)A | IOUTIN | 00S'L IAXEIN AJATGAIAS | ACASGAIAS | VAASVIVS | IOUIN | 00S L dAXeIN
(Fr'0)A | (8€0)A | (LE0)A | (0£'0)A | TOUTN PIIQaTL] VIASVIAS | VOASALVS | YAVEVIAS | IOUIN PIIGaIL]
skep ¢t | sAep 1€ | sAep [| sAep L Joleln 109lo1g yog YV a10jog JolelN 100lo1g
@0V | 1907 | #90)Y | (97'0)A | Iofely | TOS218150d AJAGVIAS | ACASVIAS | YAVEALYS | Joley | TOSAISIS0d
(9°0)A | (67°0)A | (F1'0)A | (St'0)A | IofeN 'S TOSAN AJAGVIAS | AOVIVIAS | YVAVEVIAS | Jofey 'S TOSAIN
(St'0)A | (87'0)A | (LV'O)A | (SF'0)A | Jofe]y 0'S TOSAIN AJAGVIVS | YAOASVIVS | YVAVEVIAS | Jofey 0°S TOSAIN
(It'0)A | (S'0)A | (9V'0)A | (87°0)A | Jofe]y 'y TOSAIN AJAIVIVS | ACADIVIVS | AQVEVIAS | Jofey I't TOSAN
(9¢0)A | (9¢°0)A | (S€0)A | (0V'0)A | Jofey 0t TOSAN VOALVIAS | [JOADVIAS | VAVEVIAS | Jofely 0¥ TOSAN
(FE0)A | (9c0)A | (TE0)A | (TH0)A | ofeN | €7°¢ TOSAN ACAIVIAS | [JOADIVIAS | ACAGVLVYS | Jofely | €T¢ TOSAN
(8T0)A | (€SOY | (8SOY | (09°0)Y | IofeN | 009'L AXEIN VAVAVIVS | AQVAVIVS | vAVAVLIVS | O | 009°L dAXeN
(€00A | 00)A | (100)A | (T0'0)A | JofeN | 00S'L HAXeIN vavdvyivVsS | [JA[1SALAS | YAALSVLYS | IofelN | 00S L dAxXeN
(0S'0)A | (0S0)A | (S90)Y | (950)Y | Tolely SRIEME| AQVIALVS | ACAIVIAS | AOVIALVS | Jofely PAIGaIL]
skep ¢ | sAep 1€ | sAep 41 | shep L Joleln 19lo1g yog YV a10jog JolelN 100lo1g

