
SCQL: A formal model and a query language for source
control repositories

Abram Hindle
Software Engineering Group

Department of Computer Science
University of Victoria

abez@uvic.ca

Daniel M. German
Software Engineering Group

Department of Computer Science
University of Victoria

dmg@uvic.ca

ABSTRACT
Source Control Repositories are used in most software projects
to store revisions to source code files. These repositories op-
erate at the file level and support multiple users. A general-
ized formal model of source control repositories is described
herein. The model is a graph in which the different entities
stored in the repository become vertices and their relation-
ships become edges. We then define SCQL, a first order,
and temporal logic based query language for source control
repositories. We demonstrate how SCQL can be used to
specify some questions and then evaluate them using the
source control repositories of five different large software
projects.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement—Version Control ; D.2.8 [Software En-
gineering]: Metrics—Process metrics

1. INTRODUCTION
A configuration management system, and more specifically,
a source control system (SCS) keeps track of the modifica-
tion history of a software project. A SCS keeps a record of
who modifies what part of the system, when and what the
change was.

Typically a tool that wants to use this historical information
starts by doing some type of fact extraction. These facts are
processed in order to create new information such as metrics
[9, 3] or predictors of future events [6, 7]. In some cases, this
information is queried or visualized [5, 10]. Some projects
store the extracted facts into a relational database ([8, 5, 2]),
and then use SQL queries to analyze the data. Others prefer
to use plain text files, and create small programs to answer
specific questions [9], or query the SCS repository every time
[10]. One of the main disadvantages of these approaches is
that querying this history becomes difficult. A query has

to be translated from the domain of the SCS history to the
data model or schema used to stored this information. Also,
questions regarding the temporal aspects of the data are
difficult to express. Furthermore, there is no standard for
the storage or the querying of the data, making it difficult
for a project to share its data or its analysis methods with
another one.

When a developer completes a task it usually means that she
has modified one or more files. The developer then submits
these changes to the SCS, in what we call a modification
request, or MR (this process has also been called a transac-
tion). A MR is, therefore, atomic (conceptually the MR is
atomic, even though it might not be implemented as such by
the SCS system). Once the change is accepted by the SCS,
it creates a new revision for each file present in the MR.
Thus an MR is a set of one or more file revisions, commit-
ted by one developer. The SCS allows its users to retrieve
any given revision of a file, or for a given date, determine
what is the latest revision for every file under its control.

There are many SCSs available on the market. They can be
divided into two types: centralized repositories (like CVS)
and Peer-to-Peer repositories (such as BitKeeper, Darcs,
Arch). Even though they differ strongly in the way they
operate and store the tracked changes, they all track files
and their revisions. We will focus on CVS because there is
a large number of CVS repositories available to researchers.
We will, therefore, use the CVS nomenclature in this paper.
It is important to mention that our model and SCQL can
be applied to any SCS.

This paper is divided as follow: first we present an abstract
model to describe version control systems; second, we define
a query language, called SCQL, we end demonstrating how
it can be used to pose questions related to the source control
history in several mature, large projects.

2. MODEL
In order to create a language for the querying of a SCS we
first need to be able to describe its data model. This data
model will be used to formally describe the data available
in the SCS and to provide a uniform representation of the
information available across multiple SCSs. One of the re-
quirements of this model that is “time aware” and it is able
to represent the temporal relationships (“before”, “after”)
of the different entities stored in the SCS.

MR

RevisionAuthor

File

1

1

1

*

*

*

1

*

Figure 1: Cardinality and Directions of Edges in the
Model

2.1 Characteristic Graph of a Source Code
Repository

We represent an instance of a SCS as a directed graph. Enti-
ties such as MRs, Revisions, Files and Authors are vertices,
while their relationships are represented by edges. It is im-
portant that for any given instance of a SCS, there exists a
corresponding characteristic graph, and that given a query,
this query can be translated into an equivalent graph query
on its characteristic graph. As a consequence, the original
query will be answered by solving the graph query.

2.2 Entities
The model for SCQL contains four different types of entities:
MRs, Revisions, Files and Authors. See figure 1.

MRs model modification requests and correspond to the set
MR in the graph instance. MRs have attributes such as log
comments, timestamp, and a unique ID. We assume that
the timestamp of an MR is unique (derived from its earliest
revision), and that an MR is an atomic operation. There
exists an edge from each MR to the next MR in time (if one
exists). One edge extends from the MR to the author of its
revisions, and one edge is also created from the MR to each
of its revisions (an MR is not connected to more than one
revision of the same file).

Revisions correspond to the set of file revisions and are
denoted by Revision. Revisions are atomic in time with re-
spect to other revisions, thus they have unique timestamps
and they are assigned unique identifiers. They have at-
tributes such as the diff of the change, and the lines added
and removed. An edge extends from the revision to its au-
thor, and another one to the corresponding file. Revisions
are also connected to each other. An edge is created from
any given revision to each of its successor (the revision which
modified it), thus one revision can have multiple children (or
branches). Revision subgraphs are characterized as acyclic
stream-like graph which springs up from a single node. If a
revision merges a branch from another branch (or the main
development trunk), an edge will be created from the “pre-
decessor” revisions on both branch to the merged revision.

Files are represented as the subset of vertices File in the
graph. Files are the springs from which streams of revisions
flow. Files have attributes such as path, filename, directory,
and a unique full path name. Time-wise, files have unique
timestamps associated with the first revision made of a file
(this records the moment the file first appears in the graph).
Files are connected to by revisions as described above.

Table 1: Model Primitives
isaMR(φ) is φ an MR?

isaRevision(φ) is φ a Revision?
isaF ile(φ) is φ a File?

isaAuthor(φ) is φ an Author?
numberToStr(i) Represent i as a string.

length(φ) Length of the string φ
substrφ, k, l) Return a substring of φ of length l at k.

eq(φ, θ) are φ and θ equivalent strings?
match(φ, θ) is θ is a substring of φ?
isEdge(φ, θ) is there an edge from φ to θ?

count(S) counts the elements in a subset.
isAuthorOf(ψ, φ) is ψ an author of φ?

isF ileOf(τ, φ) is τ an File of φ?
ifMROf(φ, φ) is φ is an mr of φ?

isRevisionOf(θ, φ) is θ is a revision of φ?
revBefore(θ, θ2) is there is a revision path from θ to θ2?
revAfter(θ, θ2) is there is a revision path from θ2 to θ?

Authors are represented by the subset Author in the graph.
Authors have attributes such as user ID, name and email.
Time wise authors are associated to their first revision im-
plying their entry into the project. There is only one author
per MR and per Revision.

2.3 Formalizing the characteristic graph
Formally we define the characteristic graph G of a SCS as a
directed graph of G = (V,E) where

V = MR ∪ File ∪ Author ∪ Revision

E = (v1 ∈ MR, v2 ∈ MR) ∪ (v1 ∈ MR, v2 ∈ Revision)

∪ (v1 ∈ MR, v2 ∈ Author) ∪ (v1 ∈ Revision, v2 ∈ Revision)

∪ (v1 ∈ Revision, v2 ∈ Author) ∪ (v1 ∈ Revision, v2 ∈ File)

There are 6 data types in our model: Vertices represent-
ing entities; edges representing relationships; sets of entities
which abstract edges; numbers used for numerical questions;
strings are needed since much of the data in the repository
is string data; and Booleans which are necessary to prove
invariants exist. Table 1 provides a description of some of
the primitives that operate on these types.

We implement attributes using maps. Attributes can map
from entities to subsets, strings, numerics or Booleans. An-
other assumption is that the output of a mapping is only
valid if a node or edge of a correct type is used as an index
to the map. More attributes can be added at any time but
the attributed mentioned in section 2.2 are the expected at-
tributes. Attributes which are expected to return one entity
still return a subset. The motivation is to maintain uniform
access to entities while providing a method of abstracting
edge traversal. Since sets are returned we use plural func-
tion names. Attributes that are subsets of entities (edge
traversals) are described in table 2.

2.4 Extraction and Creation
The general algorithm for extracting and creating a graph
from a SCS is:

Table 2: Sub-domain Attributes
authors(φ ∈ MR) the author of the MR

revisions(φ ∈ MR) the revisions of the MR
files(φ ∈ MR) the files of the revisions of the MR

nextMRs(φ ∈ MR) next MR in time
prevMRs(φ ∈ MR) previous MR in time
mrs(θ ∈ Revision) MR related of the Revision

authors(θ ∈ Revision) the author of the revision.
files(θ ∈ Revision) the files of a the revision

nextRevs(θ ∈ Revision) Next revisions version-wise.
prevRevs(θ ∈ Revision) Previous revisions version-wise.

mrs(τ ∈ File) MRs of the Revisions of the file
revisions(τ ∈ File) Revisions of the file
authors(τ ∈ File) Authors of the revisions of the file.
mrs(ψ ∈ Author) MRs of the author.

revisions(ψ ∈ Author) Revisions of the author
files(ψ ∈ Author) Files of the revisions of the author

• Each file becomes a vertex in File.

• Each author becomes a vertex in s Author.

• Each revision becomes a vertex in Revision. Assign
revisions unique timestamps and connect each revision
its corresponding author and file.

• Create vertices for each MR. The MR inherits the
timestamp from its first file revision. Associate MR
to its author MR.

• Each MR is then connected to the next MR (according
to their timestamp), if it exists.

• For each file, connect each revision to the next revision
of the file, version-wise. If branching is taken into ac-
count, only revisions in the same branch are connected
in this manner, and then branching and merging points
are connected.

When this algorithm terminates, the result is a characteris-
tic graph of the instance of SCS.

CVS does not record branch merges or modification requests,
but some heuristics have been developed to recover both [2,
4, 11]. Branch-merge and MR recovery in CVS are not ac-
curate, and therefore the extracted SCS graph is an inter-
pretation rather than an exact representation of the SCS.

An example of the SCS graph is depicted in figures 2 and 3.
The vertices corresponding to the revisions in 2 and 3 are
the same and they are shown in two figures to avoid clutter.

3. QUERY LANGUAGE
The rationale for our model is to provide a basis for a query
language for a SCS. We are interested in a language that
has the following properties:

• It is based on primitives that correspond to the actual
data and relationships stored in a SCS. We want a
language that directly models files, authors, revisions,
etc.

MR 1 MR 2 MR 3 MR n...

author1 author2

File1 File2 File3 File j-1 File j

Revision1 Revision2 Revision3 Revision4Revision5 Revision x+1Revision x

Figure 2: Example Model Subgraph

Revision1.1 Revision1.2 Revision1.3

Revision1.3.1 Revision1.3.2

Revision1.4 Revision1.5

branch

merge

Figure 3: Example Revision Subgraph

• It has the ability to take advantage of the time dimen-
sion. We want to able to pose questions that include
predicates such as “previous”, “after, “last time”, “al-
ways”, “never”. For example, “has this file always
been modified by this author?”, “find all MRs do not
include the following file”, “find the file revision af-
ter this other one”, “find the last revisions by a given
author”, etc.

• It is computable. We need confidence that if a query
is posed, it can be evaluated.

• It is expressive. We are interested in a language that
is able to express a wide range of queries.

The characteristic graph of a source code repository is the
basis for this language. Thus our language is built such that
any query expressed in it can be translated to a query of the
characteristic graph.

First order predicate logic will serve as a basis for our query
language, as it can handle both graph semantics and “be-
fore and after” aspects of temporal logic [1]. The language
is designed to query the model, not to provide a general pur-
pose programming language. We have focused in evaluating
decision queries with this language (those which answer is
either yes or not), but we also support other types of queries
that return other types of data (such as the id of an author,
the number of files modified, or a set of files).

The language has a rich syntax, but due to a lack of space
we only summarize its main features in table 3.

Identifiers are unbound variables that reference entities. Us-
ing a variable, one can access the attributes of the referenced

entities (x.attribute). Identifiers are only created by a scop-
ing operator such as an Anchor, Universal Quantifiers, Exis-
tential Quantifiers or Selection Scope. These scopes iterate
over elements in a subset by applying a predicate to each
element.

Existential and Universal scopes iterate through an entire
subset until a preposition returns either true or false. For
empty subsets universal scopes return true and existential
scopes return false.

Subset/Select based scopes effectively iterate through all the
elements in set of entities such as MR, Revision, File ,
Author selecting entities to form a subset. A subset can
only be the same size or smaller than the set it is testing.
These subsets may only have 1 type of entity. Anchor scopes
are like select- based scopes, but are meant to access a single
element in constant time. Scope operators that are “before”
or “after” scopes iterate through their respective subsets in
sequential order from first to last.

3.1 Example Queries
We now present three different queries and show how they
are expressed in SCQL.

Example 1: Is there an author a who only modifies files
that author b has already modified? This query can be for-
mally expressed as:

∃a, b ∈ Author s.t. a 6= b∧
∀r ∈ Revision s.t. isAuthor(a, r) =⇒
∃rb ∈ Revision s.t. before(rb, r)∧
isAuthor(b, rb) ∧ r.file = rb.file

We are trying to find two different authors such that for all
revisions of one author, there exists a previous revision (by
the second author) to the same file. The SCQL query first
finds two authors and makes sure they are different. Then it
iterates through all the revisions of author a. Per each revi-
sion, it checks if the file of that revision has another previous
revision that belongs to author b. a.revisions gets all
the revisions related to the author a while isAuthorOf(b

,r2) tests if b is the author of the revision of the file f .

E(a, Author) {

E(b, Author) {

a!=b &&

A(r, a.revisions) {

A(f, r.file) {

Ebefore(r2, f.revisions, r) {

isAuthorOf(b, r2)

}

}

}

}

}

Example 2: Compute the proportion of MRs that have
a unique set of files which have never appeared as part of
another MR before. With this query we are want to find
out how variable are the sets of files modified in MRs. We

hypothesize that an old, stable project will have a small
proportion, while a project that is still growing, and contin-
ues to have structural changes will have a larger proportion.
This query can be easily expressed directly in SCQL as:

1 - (Count(mr,MR) {

Ebefore(a,MR,mr)) {

A(f,mr.files) {

isFileOf(f,a)

}

}

} / count(MR)

It iterates over the set of all MRs, counting only those that
have a previous MR that modifies all its files too. Then it
counts all MRs, and computes the desired proportion.

Example 3: Is there an Author whose changes stay within
one directory?

∃a ∈ Author s.t.
∀f ∈ File s.t. isAuthorOf(a, f) =⇒
∀f2 ∈ Files.t.isAuthorOf(a, f2) =⇒

directory(f) = directory(f2)

In this case we want to know if there exists an author such
that for all pairs of files modified by this author, they are
both in the same directory. This query can be written in
SCQL as:

E(a, Author) {

A(f, author.files) {

A(f2, author.files) {

eq(f.directory, f2.directory)

}

}

}

4. EVALUATION
We have built an implementation for SCQL. In order to
demonstrate the effectiveness of SCQL we ran the 3 example
queries against five different projects: Evolution (an Email
Application), Gnumeric (a spreadsheet), OpenSSL (A Se-
cure Socket Layer library), Samba (Linux support for Win32
network file systems), and modperl (a module for Apache
that acts like a Perl Application server). The table 4 pro-
vides the output of the 3 example queries for each of these
projects. We include the size of the MR set (number of
MRs) and the File set too.

Table 4: Evaluation of the 3 example queries
evolution gnumeric openssl samba modperl

Ex 1 true true false false true
Ex 2 0.002 0.004 0.003 0.002 0.015
Ex 3 false false false false true
|File| 4748 3685 3698 4246 300
|MR| 18573 11337 10847 27413 1398

Table 3: Language Description
Name Language Explanation
MR MR Set of Modification Requests
Revision Revision Set of Revisions
Author Author Set of Authors
File File Set of Files
Universal A(φ, δ){P (φ)} For all φ in the set δ is the predicate P (φ) true?
Existential E(φ, δ){P (φ)} Does φ exist in set δ where predicate P (φ) is true?
Attribute φ.ζ Given an entity φ return its attribute ζ
Function γ(P) Evaluate the function γ with P as the parameter
Universal Before Abefore(φ, δ, θ){P (φ, θ)} For all φ in δ before θ is the binary predicate P (φ, θ) true?
Universal After Aafter(φ, δ, θ){P (φ, θ)} For all φ in δ after θ is P (φ, θ) true?
Existential Before Ebefore(φ, δ, θ){P (φ, θ)} Does φ exist in δ before θ where P (φ, θ) is true?
Existential After Eafter(φ, δ, θ){P (φ, θ)} Does φ exist in δ after θ where P (φ, θ) is true?
Subset S(φ, δ){P (φ)} Create a subset of δ, such that for each element φ in that subset,

P (φ) is true.
Universal From Subset A(θ, S(φ, δ){P (φ)}){Q(θ)} For each elements θ in the set δ for which P (φ) is true, Q(θ) is

also true
Anchor Select Anchor(φ,MR,′′mrid′′)P (φ) Evaluate P (φ) on the entity of type MR with id “mrid”
count count(δ) Count the number of elements of the subsets δ
Sum Sum(φ, δ){P (φ)} Summate the predicate P (φ) for all φ in δ
Average Avg(φ, δ){P (φ)} Get the average of the predicate P (φ) for all φ in δ
Count Count(φ, δ){P (φ)} Count the number of elements φ in δ where P (φ) is true.

5. SUMMARY
This paper presents a formal model to describe SCSs. This
model is then used to define a query language, SCQL, that
can be used to pose queries on the SCSs. The objective
of SCQL is to be domain specific and to support temporal
logic operators in those queries. We have demonstrated the
use of SCQL with example queries, and demonstrated their
effectiveness by running those queries against the SCS of 5
different large, mature software projects.

While it is possible to use other query languages to investi-
gate SCSs (such as SQL and XQuery) we believe that SCQL
has 2 important properties that these languages are do not.
First, it is domain specific: the queries refer to entities in the
repository, and second, it supports temporal logic operators.
While it is possible to implement temporal logic operations
in SQL or XQuery, it might result in overly complex expres-
sions.

We expect to use SCQL in the exploration of the evolution of
software and to help us compute metrics on SCS repositories.

6. REFERENCES
[1] S. Abiteboul, L. Herr, and J. Van den Bussche.

Temporal versus first-order logic to query temporal
databases. pages 49–57, 1996.

[2] M. Fischer, M. Pinzger, and H. Gall. Populating a
release history database from version control and bug
tracking systems. In Proceedings of the International
Conference on Software Maintenance (ICSM 2003),
pages 23–32, Sept. 2003.

[3] D. German. An empirical study of fine-grained
software modifications. In 20th IEEE International
Conference on Software Maintenance (ICSM’04), Sept
2004.

[4] D. M. German. Mining CVS repositories, the
softChange experience. In 1st International Workshop
on Mining Software Repositories, pages 17–21, May
2004.

[5] D. M. German, A. Hindle, and N. Jordan. Visualizing
the evolution of software using softchange. In
Proceedings SEKE 2004 The 16th Internation
Conference on Software Engineering and Knowledge
Engineering, pages 336–341, 3420 Main St. Skokie IL
60076, USA, June 2004. Knowledge Systems Institute.

[6] T. Girba, S. Ducasse, and M. Lanza. Yesterday’s
weather: Guiding early reverse engineering efforts by
summarizing the evolution of changes. In 20th IEEE
International Conference on Software Maintenance
(ICSM’04), Sept 2004.

[7] A. E. Hassan and R. C. Holt. Predicting change
propagation in software systems. pages 284–293,
September 2004.

[8] Y. Liu and E. Stroulia. Reverse Engineering the
Process of Small Novice Software Teams. In Proc. 10th
Working Conference on Reverse Engineering, pages
102–112. IEEE Press, November 2003.

[9] A. Mockus, R. T. Fielding, and J. Herbsleb. Two Case
Studies of Open Source Software Development:
Apache and Mozilla. ACM Transactions on Software
Engineering and Methodology, 11(3):1–38, July 2002.

[10] X. Wu. Visualization of version control information.
Master’s thesis, University of Victoria, 2003.

[11] T. Zimmermann and P. Weisgerber. Preprocessing cvs
data for fine-grained analysis. In 1st International
Workshop on Mining Software Repositories, May 2004.

