
Determining the Provenance of Software Artifacts

Michael W. Godfrey†, Daniel M. German‡, Julius Davies‡, Abram Hindle†

† David R. Cheriton School of Computer Science, University of Waterloo, Canada

‡ Department of Computer Science, University of Victoria, Canada
migod@uwaterloo.ca, dmg@uvic.ca, juliusd@uvic.ca, ahindle@swag.uwaterloo.ca

ABSTRACT
Software clone detection has made substantial progress in
the last 15 years, and software clone analysis is starting to
provide real insight into how and why code clones are born,
evolve, and sometimes die. In this position paper, we make
the case that there is a more general problem lurking in the
background: software artifact provenance analysis. We ar-
gue that determining the origin of software artifacts is an
increasingly important problem with many dimensions. We
call for simple and lightweight techniques that can be used
to help narrow the search space, so that more expensive
techniques — including manual examination — can be used
effectively on a smaller candidate set. We predict the prob-
lem of software provenance will lead towards new avenues of
research for the software clones community.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement

General Terms
Management, Measurement

Keywords
Bertillonage, provenance, code evolution, code fingerprints

1. A VERY BRIEF HISTORY
Much of the work on software code clone detection over

the last 15 years has concentrated on the problem of com-
puting “similarity” based on lexical, syntactic, and (some-
times) semantic properties of the software artifacts under
consideration. If two artifacts are within an acceptable sim-
ilarity threshold, they are then considered to be clones of
each other.1 That is, we measure similarity, and if we are
impressed with the results, we infer that an act of cloning

1Ira Baxter’s put it best in 2002: “Software clones are seg-
ments of code that are similar ... according to some defini-
tion of similarity.”

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

IWSC 2011 May 23, 2011, Waikiki, Hawaii, USA

Copyright 2011 ACM 978-1-4503-0588-4/11/05 ...$10.00.

must have taken place at some point in the past. Of course,
the reason we measure similarity instead of tracking history
is that we typically do not have access to edit logs of the
developers2. If we did, then we could settle these debates of
origin quickly and authoritatively.

Initially, most authors of clone detection papers cited main-
tenance problems as the rationale behind performing clone
detection: if your codebase had clones, then your develop-
ers were lazy, and your code was bloated and inconsistently
maintained. As Kent Beck and Martin Fowler say in their
chapter, “Bad Smells in Code,” from Refactoring [4]:

Number one in the stink parade is duplicated
code. If you see the same code structure in more
than one place, you can be sure that your pro-
gram will be better if you find a way to unify
them.

Recently, a more nuanced view of cloning as a principled
design practice is emerging [2, 7]; that is, code cloning can
be seen as a kind of engineering tool, with advantages and
disadvantages depending on the situation and use. Clone
detection is typically an expensive and tedious process re-
quiring manual intervention and expertise [6]. Consequently,
the rationale behind performing clone detection is now com-
monly cited as program comprehension. We no longer go
after clones as part of a search-and-destroy mission; rather,
we try to understand the context for performing cloning in
the first place to better comprehend the original design ra-
tionale of the developers [5].

2. THE PROBLEM OF PROVENANCE
The term provenance traditionally refers to the documen-

ted history of a work of art, which can be used as a guide
toward the work’s authenticity. In the previous decade the
term has been used in a digital context to refer to data
objects (e.g., files and database records), and the research
questions have revolved around software security, data trace-
ability, and IT management [1]. We see a natural applica-
tion of this term within the realm of software development.
That is, we sometimes look at a software artifact and won-
der, where did this come from? Why is it here? What is its
real history and origin?

Apart from a general desire to improve program compre-
hension, developers and IT managers have very concrete rea-
sons to be concerned about the provenance of artifacts that

2To rule out coincidental clone originations, one would need
to log every cut-and-paste operation inside the editing envi-
ronment. Even then, a clone could occur from transcription
instead of pasting, for example, from a developer typing in
code from a printout.

comprise their systems. Copying of source code across FOSS
is well documented. Sojer and Henkel interviewed several
hundred developers and discovered that copying FOSS code
by commercial enterprises is now common, but in many cases
software developers lack understanding of the legal risks as-
sociated with this activity, and their organizations lack poli-
cies to guide them [9]. If open source code is improperly
copied into a commercial product, the company could be
sued or suffer significant negative publicity as a result3. Or,
if a software component is found to be acting in a suspicious
manner, an IT manager might wish to know who designed
the component and what it is supposed to be doing.

Finally, we note that it is common practice among Java
developers to package external libraries within their appli-
cations. This is done to avoid “DLL-hell” when a developer
cannot be certain what versions of what libraries may be
present within a client’s deployment environment. However
it is not always the case that precise version information is
available for these external libraries. Consequently, applica-
tion users may be unaware that, for example, their system
uses an out-of-date library with known security holes. This
problem is exacerbated in industries where IT managers are
required to certify their systems meet specific industry stan-
dards. Knowing provenance of included libraries can be an
important prerequisite for achieving compliance with respect
to these standards.

3. BERTILLONAGE
The real problem of software provenance (and digital prove-

nance in general) is that it is wide ranging and ill defined.
There is no single technique that will work across many of
these problems, let alone all of them. And the specific ques-
tions we have will depend heavily on the particular concerns
we are trying to address. What is common across this prob-
lem space is that we seek an authoritative answer to the
question: where did this come from? We typically also have
a large candidate set to compare against, but brute force
comparison is generally infeasible. Thus, we seek techniques
that are fast, approximate, and narrow the search space, ide-
ally by rejecting as many low-likelihood matches as possible.

In a recent paper, we have used the term software Bertillon-
age to describe the kind of approach we seek [3]. Bertillonage
was a 19th century French forensic technique aimed at reduc-
ing a large search space — thousands of criminal mugshots
— into a much smaller set of candidates by the use of simple
biometrics. That is, when a criminal was originally arrested,
she was photographed and measured along 11 dimensions.
The thousands of photographs in the police files were then
organized hierarchically using the biometrics data. Then
when a suspect was arrested later on, her measurements
were taken and her photograph was sought in the small pile
that matched her measurements. As a forensic technique,
Bertillonage was a huge step forward; however, it was also
imprecise and error prone. When the science of fingerprint
identification emerged soon after, Bertillonage was soon for-
gotten.

What our desired approach has in common with Bertillon-
age is that it is fast, approximate, and can narrow a large
pool of possibilities down to a tractable set of likely sus-

3For example, in 2009 Microsoft had to recall the Windows
7 USB/DVD Download Tool because it found it improperly
contained open source code [8].

pects that can be examined using expensive techniques such
as manual analysis. In addition, we need techniques that can
provide useful answers even when the exact answers may be
missing: the forensic equivalent of matching the suspect’s
sister (and knowing it’s her sister) when the suspect herself
is not yet in the database. We have not used a more pre-
cise metaphor — such as fingerprinting or DNA analysis —
because often the answer is not precise or certain.

4. BEYOND BERTILLONAGE
The software development practice is changing. Copying

code from one application (and from one organization) to
another is here to stay. Research is needed to provide ways
to identify provenance, but that is only the tip of the prob-
lem. Once provenance is determined, how are clones going
to be managed? What happens when the origin starts to
diverge from the clone? Should the clone be updated? The
latest version might be buggy, hence finding a stable one
is paramount. What if the clone has been locally modi-
fied? How should the changes be propagated to the new
version? Provenance adds a new dimension to the original
n× n clone detection problem: n× n× chronology. This
in turn greatly magnifies the performance required of tech-
niques, and also alters the shape of the resulting answers.
These are similar problems to those that software clones
research has addressed to date, but with orthogonally dif-
ferent motivation, requirements and scope. Nonetheless, we
believe the problem of software provenance provides fertile
ground for future research in the software clone community.

5. REFERENCES
[1] J. Cheney, S. Chong, N. Foster, M. Seltzer, and

S. Vansummeren. Provenance: A future history. In
Companion to the 24th Annual ACM SIGPLAN Conference

on Object-Oriented Programming Languages, Systems,

Languages, and Applications: Onward! Session, pages
957–964, Oct. 2009.

[2] J. R. Cordy. Comprehending reality - practical barriers to
industrial adoption of software maintenance automation. In
Proc. of the 2003 IEEE Intl. Workshop of Program

Comprehension, IWPC-03, pages 196–206, 2003.
[3] J. Davies, D. M. Germán, M. W. Godfrey, and A. Hindle.

Software bertillonage: Finding the provenance of an entity.
In Proc. of the 2011 Working Conference of Mining

Software Repositories, 2011.
[4] M. Fowler. Refactoring: Improving the Design of Existing

Code. Addison-Wesley, 2000.
[5] D. M. Germán, M. D. Penta, G. Antoniol, and Y.-G.

Guéhéneuc. Code siblings: Phenotype evolution. In Proc. of

the 3rd Intl. Workshop on Detection of Software Clones,
2009.

[6] J. Harder and N. Göde. Quo vadis, clone management? In
Proc. of the 4th Intl. Workshop on Software Clones, 2010.

[7] C. Kapser and M. Godfrey. Cloning considered harmful

considered harmful: patterns of cloning in software.
Empirical Software Engineering, 13:645–692, 2008.
10.1007/s10664-008-9076-6.

[8] E. Protalinski. Microsoft pulls Windows 7 tool after GPL
violation claims. Ars Technica,
http://arstechnica.com/microsoft/news/2009/11/
microsoft-pulls-windows-7-tool-after-gpl
-violation-claims.ars, Nov 2009.

[9] M. Sojer and J. Henkel. License Risks from Ad-Hoc Reuse of
Code from the Internet: An Empirical Investigation.
Preprint, available at http://papers.ssrn.com/sol3/
papers.cfm?abstract_id=1594641, 2010.

