
Visualizing the evolution of software using softChange

Daniel M. German, Abram Hindle and Norman Jordan
Software Engineering Group

Department of Computer Science
University of Victoria�

dmgerman,abez,njordan � @uvic.ca

Abstract

A typical software development team leaves behind a
large amount of information. This information takes dif-
ferent forms, such as mail messages, software releases, ver-
sion control logs, defect reports, etc. softChange is a tool
that retrieves this information, analysis and enhances it by
finding new relationships amongst it, and allows users to to
navigate and visualize this information. The main objective
of softChange it to help programmers, their management
and software evolution researchers in understanding how a
software product has evolved since its conception.

Keywords Software evolution, software trails, CVS, vi-
sualization, softChange.

1. Introduction

Many software projects use a version control repository
to record the the evolution of their source code. These
repositories keep track of every change to any source file
of the project, including metadata about the change, such as
author and date when it happened. Over time, the amount
of revisions to a project become enormous. For example,
the Mozilla project is composed of 35,000 files which have
been modified 450,000 times in 5.5 years of development
(from March 1998 to Aug. 2003) by 500 different develop-
ers.

CVS, the Concurrent Versioning System, is arguably the
most widely used version control management system avail-
able in the market and has become a de-facto standard in the
development of open source projects.

While CVS is a very powerful tool, it provides many bar-
riers to the extraction and visualization of valuable informa-
tion. CVS commands are cryptic and often tell you exactly
what your query asked and nothing more. CVS queries of-
ten produce an excess of information which is hard for the

frustrated developer to sift through. General summaries are
rarely provided. CVS does not provide an alternative to
browsing through its information.

CVS is built around a group of command-line programs.
Several GUI applications have been built around (winCVS,
tkCVS, cvsWeb, LinCVS, Pharmacy, gCVS, etc) and some
integrated development environments (such as Eclipse) pro-
vide a GUI to CVS. In all these cases, the tools are created
around the CVS commands and options, providing nothing
more than a fancy GUI to the actual commands.

One of the main disadvantages of CVS is that it is not
transaction oriented. In other words, when a developer pro-
ceeds to “commit” a group of changes to a number of files,
CVS does not keep track of all the files modified by this
commit operation. It treats each change to a file indepen-
dently of the other files included in the commit. After the
commit has taken place, CVS does not know which files
were modified together. This information, however, is im-
portant because it highlights coupling amongst files: if two
files are modified at the same time, it is because they share
something in common. We refer in this paper to an commit
operation as a modification request (MR). A MR is there-
fore a collection of revisions to files that are modified at the
same time.

The information stored in the CVS repository is quite
valuable as it can help answering many questions. It can
assist developers in knowing who has modified which files
and when. It can help the administration in trying to under-
stand the modification patterns of the project and the way
the different team members interact. Finally, it can help in
the recovery of the evolution of the project [5]. For exam-
ple, developers can ask the following questions [10]:

� What happened since I last worked on this project?

� Who made this happen?

� When did the change take place?

� Where did the change happen?

1

� Why were these changes made?

� How has the file changed?

� What methods or functions were changed?

� What is the frequency of change?

� What files changed?

� Who is working on each modules?

Administrators, on the other hand, are interested in
higher level questions and metrics such as:

� How often does a programmer complete a MR?

� How much does the programmer change per MR

� What kind of commits does one programmer do?

� How much changed between each release?

� How many bugs are fixed and found after a stable re-
lease?

� What kind of modifications are done at a certain time?

� When was a module stabilized?

� What is the daily LOC count for each programmer?

� When is a module actively being developed and main-
tained?

We define software trails as information left behind by
the contributors to the development process, such as mail-
ing lists, Web sites, version control logs, software releases,
documentation, and the source code [5]. In this paper we
describe softChange, a tool that mines software trails from
CVS repositories, then enhances this data with some heuris-
tics in order to recover higher level information, such as
rebuilding MRs. Each MR is analyzed in order to know
what type of changes took place; such as adding new func-
tions, reorganizing source code, adding comments to the
code only, etc. After extraction and analysis, softChange
provides a graphical and hypertext representation of this in-
formation. This paper is divided as follows: previous work
is described in section 2; section 3 describes the architec-
ture of softChange; section 4 describes the visualization
features of softChange; we end describing our experiences
using softChange, our conclusions, and future work.

2. Previous Work

The two most commonly used hypertext front ends to
CVS are Bonsai [7] and lrx [6]. They provide a Web in-
terface to the CVS repository and isolate the user from the
complexities of the CVS commands (the man page of CVS
is 9000 words long, approximately 3 times the length of
this paper). Both tools allow the user to inspect the history
of any given file in the project and neither of them attempts
to enhance the software trails available in the repository.

Xia is a plugin for Eclipse for the visualization of CVS
repositories[10]. Xia recovers relations available in the logs
of a CVS repository and allows the user to navigate them. It
uses squares to represent files, their revisions and develop-
ers, and lines to represent the relationships between them.
Xia has two main limitations. The first is that Xia relies on
the Eclipse API to access the CVS repository. Every time
Xia wants to create a view, it queries the CVS repository in
order to retrieve the necessary data. This becomes a very ex-
pensive operation making Xia extremely slow in large CVS
repositories. The second limitation is that Xia operates at
the revision level, not at the MR level.

Hipikat aggregates many sources of information such as
bugzilla, the CVS repository, mailing lists, emails etc and
provides a searchable query interface[1]. The purpose of
Hipikat is to ”recommend software artifacts” rather than
summarize and visualize them. Thus Hipikat is much like
Google for a software project. One interesting feature of
Hipikat is that it correlates software trails from different
sources, inferring relationships between them.

Liu and Stroulia have developed JReflex, a plug-in
for Eclipse for instructors of software engineering courses.
JReflex helps the instructor to monitor how different teams
of students developed a term project by using their CVS
historical information [8]. It is designed to compare the dif-
ferences in development styles in different teams, who does
what, who works on what part of the project, etc. JReflex
is intended to be a management oriented tool for browsing
the CVS historical data. JReflex does not enhance the in-
formation available in CVS.

Fisher and Gall have described a CVS fact extractor in
[2]. In it they describe the main challenges of creating a
database of CVS historical data and then use it to visualize
the interrelationships between files in a project [3].

3. softChange Architecture

softChange is composed of four main components, de-
picted in figure 1.

� Software trails repository: At the core of softChange
lies a relational database that is used to store all the
historical information.

2

Web Client
with SVG support

Visualizer

PostScript

softChange
 Architecture

 mail
archives

 bugzilla
repository

 cvs
repository

.h.pl.pl.pl .cpp.cpp

.c.c.c.c
.c.c.c.c

.cpp.cpp.cpp.cpp

Fact Extractor

Fact EnhancersoftChange
 repository

Figure 1. Architecture of AUSS

� Software trails extractor: In a typical software devel-
opment project, software trails originate from many
different sources: CVS historical data, email mes-
sages, bug reports, ChangeLogs, etc. The purpose of
softChange trails extractor is to retrieve as many soft-
ware trails as possible. Currently, softChange is able
to retrieve trails from CVS, from ChangeLogs, from
the releases of the software (the tar files distributed by
the software team) and from Bugzilla.

� Software trails analyzer: Once softChange has ex-
tracted the software trails, it proceeds to use this in-
formation to generate new facts. For example, using
a set of heuristics, softChange regroups file revisions
into MRs. softChange analyzes the changes in the
source code and thus extracts a list of function, meth-
ods and classes that have been added, modified or re-
moved from one file revision to the next. softChange
also correlates the available software trails; for exam-
ple, softChange links a given MR to its Bugzilla bug
report.

� Visualizer: softChange provides a visualizer to the
repository that allows the user to explore the software
trails. This front end is described in detail in the next
section.

4. Visualizing software trails

One of the main purposes of softChange is to summa-
rize and browse MRs. It will help developers, administra-
tors and researchers explore and understand the develop-
ment of the project. Instead of tedious typing, a developer
or maintainer could quickly navigate through the MRs us-
ing the Web visualization front-end of softChange. The
visualizer is divided in two main parts: a hypertext browser
and a graphical viewer. The hypertext browser is used to
navigate through the MRs. Users can choose to navigate
MRs by date, by author, or by filename. For each MR,
softChange provides the details of what revisions to which
files it contains, and any metadata about the modification.
The information is cross-referenced so it is possible to nav-
igate amongst any related information by following hyper-
links.

softChange tries to leverage any external sources of in-
formation too. One benefit of the hypertext application is
the ease of information association. Integration to other ex-
isting hypertext tools is quite easy by hyperlinking between
tools. If the project provides a bugzilla repository (such as
it is the case with many open source projects), a given MR
is linked to its corresponding Bugzilla entry. softChange
also links to the Bonsai repository of the project if one ex-
ists. Figure 4 shows a snapshot of softChange displaying
the details of an MR for the Mozilla project.

The graphical viewer of softChange is composed of two
main parts. One uses PostScript to generate static plots
of the software trails. The other one uses SVG to display
the same information more interactively. The SVG version
takes advantage of its hypertext capabilities to link points in
the plots with their details (by pointing to their details in the
hypertext browser of softChange). softChange is able to
generate the following plots:

� Growth of LOCS vs time, at the project level and at
the module level (a module in softChange is defined
as the collection of files under a given subdirectory).

� Number of MRs vs time: How many MRs are commit-
ted in a given period?

� Number of files vs time: How many files are part of
the project at a given point in time?

� Number of files in a given MR: How many files com-
pose a given MR?

� Proportion of MRs per contributor: What is the distri-
bution of the number of MRs per contributor?

� Proportion of revisions per source code file: How fre-
quently is a given file modified?

3

Figure 2. Hypertext browser: details of an MR using softChange

� Number of modules that are modified in a given MR:
How frequently an MR includes modifications of 2 or
more modules?

� Project time-tree: When are given files created and
modified, displayed in a timeline fashion?

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 2 4 8 16 32 64 128

P
ro

po
rt

io
n

of
 to

ta
l M

R
s

(lo
g

sc
al

e)

Developers (log scale)

Developer activity

Figure 3. PostScript visualizer: proportion of
MRs per contributor.

The PostScript viewer generates plots that are static in
nature. The user determines the necessary parameters for
the plot, and softChange generates in return an encapsu-
lated PostScript file. Figure 3 depicts the proportion of MRs

per developer for Evolution (a GUI mail client for Unix
equivalent to Microsoft Outlook). Figure 4 depicts the num-
ber of MRs against time in the same project [5].

The SVG viewer takes advantage of the hypertext and in-
teractivity features of SVG. This interaction is highlighted
in the project time-tree diagram. The time tree graph is a
view of a file directory tree. It depicts the how files popu-
late a given directory (and its child subdirectories) and the
proportion of MRs that include them at any point in time;
the horizontal axis corresponds to time. Every time a file
or directory is created, a new branch is started from the di-
rectory line. The user can expand and contract any given
subdirectory, in order to avoid information overload. The
user is also allowed to zoom-in, and zoom-out in any given
region of the plot. Figure 5 depicts this diagram for the
project Evolution.

5. Evaluation and Future Work

softChange has been successfully used to recover the
history of the software project Evolution. The results are
reported in [5]. softChange was used to extract Evolu-
tion’s software trails, enhance them, and then query and
visualize them. The Evolution project was born in 1999.
By May 2003, its CVS repository kept track of almost 5000
files, for a total of 77,000 revisions. These revisions were
reconstructed into 18,500 different MRs. A total of 201
developers committed at least one revision to the project.

4

 0

 200

 400

 600

 800

 1000

 1200

98/01 98/07 99/01 99/07 00/01 00/07 01/01 01/07 02/01 02/07 03/01
 0

 20000

 40000

 60000

 80000

 100000

 120000

M
R

s

Date

Ximian starts operations

Rel 0.0 Rel 1.0 Rel 1.2

Rel 1.1.1 Rel 1.3.1

MRs
code MRs

Major releases

Figure 4. PostScript front-end: MRs over time.

Figure 5. Time-tree in softChange

5

The size of the historical database created from the software
trails of Evolution accounted for approximately 0.5 Gbytes.
softChange helps us understand how the project evolved,
and how its developers collaborated.

Another research project in which softChange was used
is described in [4]. In this case, we were interested in
understanding the way that the software developers of the
GNOME project (a large, open source project) collaborate.
The analysis of these software trails allowed the discov-
ery of interesting facts about the history of the project: its
growth, the interaction between its contributors, the fre-
quency and size of the contributions, and the important
milestones in its development.

Given that many of the plots and reports of softChange
were designed around the questions described in the intro-
duction, we are confident that softChange is useful to soft-
ware developers and their management. We expect to main-
tain the historical data of several projects using softChange
and make it available to developers, and then evaluate how
they use it.

One of the main advantages of keeping all software trails
in a relational database is that we can analyze them and en-
hance them by extracting new knowledge from them. Our
current research is into the characterization of MRs. We
want to know what types of MRs are typically committed
by developers: are they source code modifications, docu-
mentation, or internationalization? If there are changes to
the source code, are they bug fixes, new features, reorgani-
zation of the code or clean up? With this enhanced infor-
mation, users can discriminate and select the changes they
are interested in, without being overwhelmed by the amount
of available data. The more facts that are known about the
evolution of the project, the better the visualization tools
that can be created.

Data mining of software trails is a promising area. Old,
stable software projects have a large amount of software
trails available. These trails can be mined for new facts;
these facts can be used for better visualizations.

The architecture of softChange permits the use of dif-
ferent visualization tools. We are currently working with
JReflex to adapt their Eclipse plug-in to softChange. We
are also pursuing using Shrimp [9] to visualize the relation-
ships available in the repository. softChange is an open
source project, with an open architecture. We hope that
other research projects will help create more trail extraction
tools, more fact enhancing algorithms and more visualiza-
tion tools.

Acknowledgments

This research was supported by the National Sciences
and Engineering Research Council of Canada, and the Ad-
vanced Systems Institute of British Columbia.

References

[1] D. Cubranic and G. C. Murphy. Hipikat: Recom-
mending pertinent software development artifacts. In
Proceedings of the 2003 International Conference on
Software Engineering, pages 408–418, Portland, May
2003. Association for Computing Machinery.

[2] M. Fischer, M. Pinzger, and H. Gall. Populating a Re-
lease History Database from Version Control and Bug
Tracking Systems. In Proceedings of the International
Conference on Software Maintenance, pages 23–32.
IEEE Computer Society Press, September 2003.

[3] M. Fisher and H. Gall. MDS-Views: Visualizing prob-
lem report data of large scale software using multidi-
mensional scaling. In Proceedings of the International
Workshop on Evolution of Large-scale Industrial Soft-
ware Applications (ELISA), September 2003.

[4] D. M. German. Decentralized open source global soft-
ware development, the gnome experience. Journal
of Software Process: Improvement and Practice, Ac-
cepted for publication, 2004.

[5] D. M. German. Using software trails to rebuild the
evolution of software. Journal of Software Mainte-
nance and Evolution: Research and Practice, To ap-
pear, 2004.

[6] A. G. Gleditsch and P. K. Gjermshus. lrx Cross-
Referencing Linux. http://lxr.sourceforge.net/, Visited
Feb. 2004.

[7] T. Hernandez. The Bonsai Project.
http://www.mozilla.org/projects/bonsai/, Visited
Feb. 2004.

[8] Y. Liu and E. Stroulia. Reverse Engineering the Pro-
cess of Small Novice Software Teams. In Proc. 10th
Working Conference on Reverse Engineering, pages
102–112. IEEE Press, November 2003.

[9] M.-A. D. Storey, C. Best, and J. Michaud. SHriMP
Views: An Interactive and Customizable Environment
for Software Exploration. In Proc. of International
Workshop on Program Comprehension, May 2001.

[10] X. Wu. Visualization of version control information.
Master’s thesis, University of Victoria, 2003.

6

