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Abstract—Docker is becoming ubiquitous with containerization
for developing and deploying applications. Previous studies have
analyzed Dockerfiles that are used to create container images in
order to better understand how to improve Docker tooling. These
studies obtain Dockerfiles using either Docker Hub or Github.
In this paper, we revisit the findings of previous studies using
the largest set of Dockerfiles known to date with over 9.4 million
unique Dockerfiles found in the World of Code infrastructure
spanning from 2013-2020. We contribute a historical view of the
Dockerfile format by analyzing the Docker engine changelogs and
use the history to enhance our analysis of Dockerfiles. We also
reconfirm previous findings of a downward trend in using OS
images and an upward trend of using language images. As well,
we reconfirm that Dockerfile smell counts are slightly decreasing
meaning that Dockerfile authors are likely getting better at
following best practices. Based on these findings, it indicates that
previous analyses from prior works have been correct in many
of their findings and their suggestions to build better tools for
Docker image creation are further substantiated.

Index Terms—Git, GitHub, Docker

I. INTRODUCTION

Docker, a tool for creating and running programs in con-
tainers consistently across platforms, was initially released
to the public on March 20, 2013 [1], [2]. Ever since its
release, Docker has amassed a considerable following with
2.9 million desktop installations and 7 million Docker Hub
users as reported in July 2020 [3].

The use of container software such as Docker has made ap-
plications easier to deploy, scale, and migrate across platforms.
Furthermore, it has also made development setup simpler
by reducing the amount of time needed to configure an
appropriate environment by bundling the needed configuration
instructions in a Dockerfile which can then be used to create
images for containers.

Because of the proliferation of Docker, this paper seeks
to replicate and elaborate on previous studies on Dockerfile
usage using the largest Dockerfile dataset [4] known to date.
This paper has findings, using data between 2013-2020, that
include:

• Discovering that 7.99% of Dockerfiles exist in more than
one distinct repository

• Most repositories overall contain up to 6 Dockerfiles
• Confirmation of previous findings such as JavaScript

being the most popular language of projects that contain

Dockerfiles [5], [6] (2016, 2020) and RUN being the most
popular Dockerfile instruction [5]

II. PREVIOUS WORK

In previous work, large collections of Dockerfiles have been
mined from Github and Docker Hub to better understand
Docker use in repositories and to gather insights on popularity,
quality, and possible ways to improve Docker usage.

Mining Github: Cito et al. [5] (2016) focused on analyzing
over 70,000 Dockerfiles in Github within commits up until
October 2016 finding that: most Dockerfiles use heavy-weight
operating systems as a base image; the biggest quality issue of
Dockerfiles is missing version pinning of images; and Dock-
erfiles are not revised often. In another study by Wu et al. [7]
(2020), 6334 projects were selected from Github and analyzed
for Dockerfile smells finding that: 62% of projects selected
have code smells; newer and popular projects have less code
smells; and projects with different languages have discernible
differences in the amount of smells. Also of note is Henkel et
al. [8] who retrieved approximately 178,000 Dockerfiles from
Github to test with rules mined from the Dockerfiles of official
Docker images and found that there should be more tooling
to support developers using Dockerfiles.

Mining Docker Hub: Lin et al. [6] (2020) scraped Docker
Hub and its related GitHub and Bitbucket repositories re-
trieving 434,304 Dockerfiles up until May 2020. They sought
to better understand the Docker ecosystem through Docker
Hub. They concluded that: for base images more programming
runtime images and ready-to-use application images are being
used instead of OS images; there is a declining trend over
the years in Dockerfile smells; and there is an upward trend
of using end of life Ubuntu base images. Additionally, Zhang
et al. [9], [10] selected 2840 projects from Docker Hub to
identify evolutionary patterns of Dockerfiles and its impact on
Dockerfile quality and image build latency. It should be noted
that mining from Docker Hub may not be representative of all
Docker usage as users do not have to push images to Docker
Hub to use Docker and can choose to build and host images
locally or in a private repository.

A. Challenges in Previous Work
All of the above previous work focuses on Docker use in

a project based perspective and involves mining Dockerfiles
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from git repositories on services like Github. In these services,
projects are often cloned via “fork” features or by manually
copying other repositories leading to potential analysis of
cloned work. Furthermore, files may be replicated among
repositories that appear to be distinct.

In previous work, the heuristics used to choose projects
containing Dockerfiles vary including counting the number
of stars in Github for project popularity. We argue that by
selectively choosing projects based on popularity, an unclear
picture of how Dockerfile usage is created as projects can con-
tain clones of Dockerfiles. Therefore, we do not use projects to
select Dockerfiles but instead center our trend analysis around
the unique Dockerfile blobs (identified by SHA-1s) committed
year by year via git present in the “World of Code” [11].

Furthermore, in previous studies analyzing Dockerfile code
smells, the evolution of instruction use overtime in relation to
the changes of the Docker engine itself over time were not
considered. This paper introduces a comprehensive review of
the annual evolution of the Dockerfile format in Section V.

B. Replicating Previous Findings

In light of the challenges in previous work, this paper aims
to replicate the analysis of Dockerfiles in open source software
on a year by year basis centered around unique Dockerfiles
instead of projects with data up until September 2020 and
intends to confirm or refute the following findings:

• “RUN” is by far the most popular instruction and often
used to manage dependencies [5] (2016)

• Dockerfiles are not changed often [5] (2016)
• Most Dockerfiles use heavy-weight operating systems as

a base image [5] (2016) which contrasts with most Dock-
erfiles using ready-to-use and application base images [6]
(2020)

• The biggest Dockerfile quality issues are the lack of
version pinning [5], [6] (2016, 2020), newer and popular
projects have less code smells [7] (2020), and there is
a declining trend over the years in Dockerfile smells [6]
(2020)

Our intent to replicate previous studies mining large Dock-
erfile collections leads to the following research questions:
RQ1. How are instructions and base images used in

Dockerfiles over time?
RQ2. How prevalent are code smells in Dockerfiles?
RQ3. How do Dockerfiles change over time?

By revisiting previous studies of Dockerfile datasets with
a significantly larger and newer dataset, we aim to provide
a more comprehensive picture surrounding Dockerfile usage
to better support high quality Docker image builds and better
tooling within the Docker ecosystem.

III. DOCKERFILE DATA

The Dockerfile data is obtained from the S version of
WoC (World of Code) [11]. The latest S version contains
9,192,143,411 unique blobs, 2,326,066,436 commits, and
135,162,320 distinct repositories collected from open source

communities including GitHub, Bitbucket, and GitLab iden-
tified on August 28, 2020 and retrieved by September 18,
2020 [12]. A distinct repository is determined as the “most
central” repository to represent a group of repositories found
with the Louvain community detection algorithm [13]. By
using distinct repositories, many cloned projects (forks) can
be avoided when performing an analysis.

A. Obtaining Data

Dockerfiles are found by identifying the SHA-1s of blobs
with the filename containing “Dockerfile” (non case-sensitive).
We do not check for an exact match for a filename containing
only “Dockerfile” as other phrases can be prepended and
appended to “Dockerfile” and still be used to build a container
image [14]. From this initial search, 12,201,624 filenames
mapping to blob SHA-1s are obtained.

A unique list of blob SHA-1s with 10,167,327 related
to filenames containing “Dockerfile” (non case-sensitive) are
obtained from the initial 12,201,624 blob SHA-1s. It should
be noted that 15 blob SHA-1s are omitted as they are linked
to over 100,000 or more commits in repositories and clearly
do not contain any Dockerfile-like data.1

We obtain the contents of 10,065,114 blobs from the
10,167,327 blob SHA-1s. Some of the blob contents are
missing since WoC only stores the contents of non-binary
files as classified by the libgit2 library git blob is binary
function [15].

We parse the blob contents using the Python dockerfile
library [16] (a wrapper for the official Dockerfile parser) and
store the returned metadata for each command. It should be
noted that the contents of the blobs are encoded to be UTF-8
with null chracters removed and any unknown characters
replaced with a backslashed escape sequence as handled by
Python 3 [17].

During the parsing of blob contents, another 435,490 blobs
are removed due to three cases: not being parseable, not
containing “FROM” as the first instruction, or not having
“ARG” precede “FROM” as the initial instructions. For the
first case there are 17,718 blobs and for the latter cases there
are 417,772 blobs. With these three cases omitted, a unique list
of 9,629,624 parseable blob SHA-1s and contents is retrieved.
The parseable blobs are broken down into 117,819,113 lines of
Dockerfile instructions via the Docker parser with 1,202,952
being invalid instructions. In total, there are 9,445,029 blobs
with all valid instructions.

Of the 9,629,624 blob SHA-1s, 11,515,615 unique commits
are found to be linked to the blob SHA-1s. These unique
commits are linked to 1,950,994 distinct repositories that
represent a group of repositories. Overall, the unique commits
exist in 4,470,158 repositories. It should be noted that 11,706
commits could not be linked to repositories as they may have
become orphaned by the time of mining and were unable to
be linked to a repository. Of the 4,470,158 repositories we
find that commits are present in 4,279,731 repositories on

1https://github.com/ssc-oscar/lookup/blob/5e78bbf/woc.pm/#L718-L812

https://github.com/ssc-oscar/lookup/blob/5e78bbfe322a83f425c2cf8d7982d2be4e82d79b/woc.pm#L718-L812


Github, 121,187 on GitLab, 65,247 on Bitbucket, 1620 on
Debian Salsa Gitlab, 2079 on GNOME GitLab, and 294 on
other open source git version control systems.

For the distinct repositories, additional available metadata
information including the types of files, the number of files,
the community size determined with the Louvain method, the
number of commits, and the initial commit date is retrieved
from the WoC MongoDB for the S version for 1,950,990
repositories as of December 2020. Four repositories did not
have metadata since their commits did not contain valid author
timestamps.

All of our data mined from the WoC is inserted into a
Postgresql database for querying to provide an overview of
the state of Dockerfiles in open source software in Section IV
and to also answer the research questions in Section VI. We
also provide a replication package to reproduce our work [4].
To our knowledge, this is the most extensive set of Dockerfiles
created to date.

B. Use of Data for Analysis

Because the data is mined from such a vast array of sources,
the data may be inaccurate as some author timestamps are
unreasonable (e.g. having a commit on January 1, 1970).
Therefore, we are particularly interested in blobs committed
from the start of 2013 until 2020 to answer our research
questions. Within the time frame there are 9,456,011 unique
blob SHA-1s that have been committed and are parseable.
These SHA-1s are linked with 1,950,964 distinct repositories
overall. We filter the blobs further as needed since the author
timestamps of the commit containing the Dockerfile may be
inaccurate (blob is created on a different date). To avoid
confusion as to which blobs are used for analysis, we repeat
the counts of SHA-1s and distinct repositories throughout the
paper.

IV. THE STATE OF DOCKERFILES

Since the WoC allows for the linking of blobs to commits
and commits to projects, it allows for an analysis to determine
the number of unique Dockerfile blobs present in each distinct
repository. It also allows for an analysis to see how Dockerfiles
may be cloned among distinct repositories. WoC also classifies
the languages of distinct repositories allowing us to revisit
previous studies of the distribution of programming languages
in projects. This section presents some novel insight into how
Dockerfiles relate with communities of repositories in open
source software.

A. Dockerfile Commit Ratio

Upon counting the blobs and commits for each distinct
repository, it becomes evident that some repositories contain
a significant amount of Dockerfile blobs. Thus, we introduce
a simple heuristic to determine how many blobs on average
a repository may contain by taking the total count of Dock-
erfile blobs related to commits of a distinct repository and
dividing it by the total count of Dockerfile commits of a
distinct repository. This heuristic can be used to help identify

anomalies where a repository is housing an atypical number
of Dockerfiles as the ratio approximately corresponds to the
number of Dockerfiles in a repository.

Using Dockerfile commits between the start of 2013 until
2020 in 1,950,964 distinct repositories, we find that 99% of
distinct repositories contain a rounded ratio of 0-6 which
can be seen broken down in Table I. In terms of descriptive
statistics for the ratio, we get a standard deviation of 66.94,
a mean of 1.39, and a maximum of 89,110. A ratio can be
0 since a blob with the same SHA-1 might be committed in
multiple commits of the same distinct repository creating a
ratio close to 0.

TABLE I: Rounded ratio proportions of distinct repositories.

Rounded Ratio 1 2 0 3 4 5 6 Other
% of Distinct Repositories 78.6 9.24 6.61 2.47 1.22 0.51 0.34 1.01

Of the 1% (Other) of the rounded ratios, we present the
top 6 projects in Table II and bottom 6 projects in Table III. It
should be noted that some distinct repositories no longer exist,
therefore an attempt was made to find a live online version
related to the distinct repository community using the “P2p”
mapping in WoC; the links to the related existing repository
are present as citations in the tables.

With manual inspection of the top 6 distinct repositories in
Table II that were able to be accessed, it is found that these
repositories host many Dockerfiles as libraries for research,
archiving, and to deploy software.

In comparison, with the manual inspection of the bottom
6 distinct repositories in Table III, it is found that most of
these repositories use Dockerfiles to run software in a new
environment.

We also determine that 6815 distinct repositories with a ratio
greater than 6 have 1,474,366 distinct blobs not present in
other repositories, making up 15.3% of 9,620,453 Dockerfiles
present in the dataset. Of particular interest is “arpl base-
images” [32] (which is linked to an IoT Docker image library)
containing 936,440 (63.51%) of the 1,474,366 distinct blobs
not present in other repositories. In addition, we find that the
top 6 distinct repositories of Table II contain another 201,415
(13.66%) of the 1,474,366 distinct blobs not present in other
repositories.

TABLE II: Top 6 distinct repositories of Other in Table I.
Distinct Repository Blobs Commits Ratio Purpose
irvin-s docker repair [18] 178221 2 89110 Research using the extracted dataset of

Henkel et al. [8]
x0rzkov dockerfiles-search [19] 232608 12 19384 Mined Docker Hub images
volt72 dockerfiles [20] 55609 4 13902 Generate Dockerfile metadata

from Docker Hub images
vsoch dockerfiles [21] 213154 18 11842 Mined Docker Hub images [22]
lonroth woocommerce-docker [23] 20004 3 6668 Deploy WooCommerce WordPress
lizebang docker-images 26846 5 5369 Could not be retrieved

TABLE III: Bottom 6 distinct repositories of Other in Table I.

Distinct Repository Blobs Commits Ratio Purpose
laarid docker [24] 501 77 7 Run android apps in Debian
sachanda docker-ansible-1 [25] 860 132 7 Run ansible in different OSes
Mpit4365 teamcity [26] 261 40 7 Run TeamCity CI/CD Server
fouadsemaan docker-ansible-role [27] 98 15 7 Run ansible in different OSes
chrsm harbor [28] 72 11 7 Personal Docker image library
silky i2kit [29] 118 18 7 Deploy Linux containers
tomeliason d98821 [30] 59 9 7 Practice coursework
defn aws-service-operator [31] 105 16 7 Manage Amazon Web Services



TABLE IV: Top 10 cloned Dockerfiles.
Blob SHA-1 Repositories Commits Year Base Image(s) Purpose
990c12e0f20e21ba917587868f6a452c0d4f9d64 24859 28991 2015 ubuntu:12.04 Run JavaScript
264c5c036d03f3b9e53f0e2405fdca00b37d9d24 20960 23890 2018 php:5.6-cli Run PHP
53fc52579744539dc9d223be13fe7be565396bf2 16830 29280 2014 ubuntu:trusty Build and Run curl
f6a095230e85638cc9f98dd7beef2bcf8c87e98e 8512 10357 2019 composer:latest, php:7.3 Run PHP Guzzle
c14d9894645da81ce14370f77002850fbee6a504 8337 9622 2018 ubuntu:latest Build node-sqlite3
5a19c7311639bc2186aa2501f921cc01df4aab93 8308 9585 2019 arm64v8/node:carbon Build node-sqlite3
4543daff8c4bb3b132a326ee892bf9d043d4a56b 8117 10236 2017 node:6 Run sequelize
ed587a774f09569b1f4487906a0599ffc8586823 7580 8692 2019 resin/rpi-raspbian:stretch Build node-sqlite3
5b1552375393d83596edfa6d5edaebdf3f2d4261 7099 7188 2018 openjdk:8-jdk-slim Run Java jar
42e341df485d0d96252c69f306f894117ea6b953 6424 7371 2017 ubuntu:14.04 Example Dockerfile

The results of the distinct repositories found using the
ratio suggests that a large proportion of Dockerfiles in our
mined data exists in a small number of projects. However,
we should not remove the Dockerfiles present in these distinct
repositories from the dataset since many Dockerfiles are mined
from Docker Hub signifying that they have been useful to
at least the person who pushed the image to Docker Hub.
Furthermore, real world deployments may use Dockerfiles in
the repository like the IoT Docker image library [32]. In the
next subsection, we examine how Dockerfiles can exist among
many distinct repositories.

B. Most Cloned Dockerfiles

We obtain the distinct repository count and commit count
for 9,456,011 unique blob SHA-1s. For the distinct repository
count we find that most blobs exist in 1 distinct repository
with a mean of 1.24 repositories and a standard deviation of
16. In comparison, we find that the commit counts have a mean
of 2.6 commits with up to 75% of blobs having 2 commits
and up to 50% of blobs having only 1 commit. It should be
noted that there is a large variance for commit counts with
a standard deviation of 1179. We compare the distributions
of counts using the Kruskal-Wallis test and find p<0.001 and
therefore commit counts are not necessarily linked to distinct
repository counts.

We find that 768,508 Dockerfile blobs (7.99%) exist in more
than one distinct repository. As we wish to see what kinds
of Dockerfiles are the most prevalent throughout open source
software, we observe the top 10 cloned blobs present among
distinct repositories in Table IV. In the table, we note the blob
SHA-1, distinct repository count, commit count, year (≥ 2013)
first committed, base image, and the blobs interpreted purpose
based on manual inspection of the Dockerfile. It should be
noted that for some blobs there were multiple commit dates,
hence we take the oldest date greater than or equal to 2013
(the year when Docker was first introduced) as the year.

With the manual inspection of the top 10 most cloned
Dockerfiles, we find that the main purpose of Dockerfiles is
to build popular software or be a base image to run software
in a programming language.

C. Programming Language Distribution

In previous related work, the top 15 primary languages
of Dockerfile containing projects in 2016 [5] and top 12
primary languages of Dockerfile containing projects from
2013-2020 [6] are found to have similar popular programming
languages. We seek to confirm this finding using the primary
programming languages of distinct projects determined by the
WoC infrastructure.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
% of Distinct Repositories

JavaScript

Java

Python

PHP

C/C++

Ruby

TypeScript

Go Dockerfile
All

Fig. 1: Top 8 primary languages of Dockerfile containing distinct
repositories and all WoC distinct repositories in 2020.

In Figure 1, we present the top 8 primary programming
languages in Dockerfile repositories and all of WoC. We find
that JavaScript is more popular among Dockerfile repositories
compared to all the repositories of WoC. We also see a similar
pattern for Go, PHP, and Typescript. Notably, there are sub-
stantially less Dockerfile repositories with C/C++ compared to
all of WoC. This suggests that repositories containing Dock-
erfiles tend to use more mainstream programming languages
like JavaScript, PHP, Typescript, and Go.

With the WoC data including 1,950,990 distinct repositories
containing Dockerfiles, we find that the top 8 languages
presented in Figure 1 to be present in the top languages found
by Cito et. al [5] and Lin et al. [6]. However, we note that WoC
only classifies 28 distinct languages based on file extensions,
while GitHub classifies projects using Linguist [33] with
the ability to classify 573 (at the time of writing) kinds of
programming languages. As well, WoC does not classify shell
scripts, while previous studies did [5], [6]. Therefore, this
should not be considered as a one-to-one comparison.

Interestingly, it appears that JavaScript and Python are both
quite popular in our findings and previous studies. However,
we do find that Go with WoC classification is less popular
compared to previous studies which may be due to how WoC
classifies the programming languages of a repository.

State of Dockerfiles: Most repositories that contain Docker-
files, contain up to 6 Dockerfiles and only a small portion of
Dockerfiles are cloned among different distinct repositories.
For projects that contain Dockerfiles, they are most likely to
be coded in JavaScript.

V. DOCKERFILE FORMAT EVOLUTION

Over the years, the Docker tool has added and deprecated
instructions in the Dockerfile specification. Due to the evolving
nature of Dockerfile specifications, caution should be taken
when analyzing how the Docker ecosystem has evolved. For
example, a code smell defined by the Dockerfile linter finds
that using “MAINTAINER” is a smell since it was deprecated



in 2017. However, all Dockerfiles created before 2017 should
not consider using “MAINTAINER” as a code smell for
analysis as it was considered acceptable at the time. As such,
we introduce the changes made in the Dockerfile specification
over time by reviewing the Docker changelog [34] to aid our
analysis in Section VI.

2013: The concept of a Dockerfile to create docker im-
ages was first introduced into the Docker tool on April
11, 2013 about one month after revealing Docker 0.1.4 to
the world [35]. In the initial concept, only the instructions
“FROM”, “RUN”, and “COPY” were used as seen in the
initial example [36]. In the subsequent weeks, the concept
was christened to be a Dockerfile [37]. Dockerfile was first
officially documented in version 0.3.1 to have the “FROM”,
“MAINTAINER”, “RUN”, “CMD”, “EXPOSE”, “ENV”, and
“INSERT” commands. The “ADD” command was also sub-
sequently added in version 0.3.4. It should be noted that
“INSERT” was quickly deprecated in favor of “ADD” in ver-
sion 0.4.5. Other instructions were also introduced including:
“ENTRYPOINT” in version 0.4.8, “VOLUME” in version
0.5.0, and “USER” and “WORKDIR” in version 0.6.0.

2014: The “ONBUILD” instruction was added in version
0.8.0 so that instruction execution in a base image could be
deferred until the time of building a subsequent Docker Image.
In addition, the “COPY” instruction was also introduced in
version 0.12.0 so that files could be copied without extraction.

2015: The “STOPSIGNAL” instruction was added in ver-
sion 1.9.0 so that different syscalls could be specified for
terminating processes in an image. The “ARG” instruction
was also introduced in version 1.9.0 so that variables could
be passed to the builder from the command line at build time.
As well, starting from version 1.5.0, “FROM scratch” was
made to be interpreted as a no-base specifier, and files not
named Dockerfile could be built by specifying a -f flag in the
command line.

2016: The “LABEL” instruction was introduced in ver-
sion 1.11.1 to add metadata to the image being built. In
version 1.12.0, two more instructions were also introduced:
the “HEALTHCHECK” instruction allowing for a command
with an exit code to run to detect a container status and the
“SHELL” instruction to change the default shell in “RUN” in-
structions. It should also be noted that the “#escape=” directive
was also added to change the default “\” escape character so
that Windows paths could be defined in Dockerfiles.

2017 and Onward: In 2017, the “MAINTAINER” instruc-
tion was deprecated in version 1.13.0. In version 18.03.0-ce,
Dockerfiles no longer needed to be within a build-context
to build an image. Also of note was introducing the sup-
port for multi-stage builds in version 17.05.0-ce. In 2018,
version 18.06.0-ce introduced a new optional experimental
backend based on BuildKit allowing for images from external
Dockerfile implementations to be built.

VI. TRENDS OVER TIME

We perform an empirical analysis in terms of trends an-
nually from 2013-2020 to better understand how the Docker
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Fig. 2: Percentage of standard instructions (≥ 2013): (a) decreasing
and (b) increasing, and new instructions (≥ 2014): (c) up to 12%
and (d) less than 1%.

ecosystem is evolving over time. In this section we drill down
and analyze how Dockerfiles change over time, what kinds of
instructions and base images Dockerfiles use, and also any
possible Dockerfile best practices that may or may not be
followed.

To determine if there is any significance among distributions
over the years for the types of bases images, number of smells,
and number of revisions, we perform the Kruskal-Wallis
(KW) test. If significant with two pairs or more, we perform
the Mann-Whitney (MW) rank test with Holm adjustment
to determine the significance among the distributions. The
null hypothesis for KW test and MW rank test is that the
distributions are not significantly different among each other.
We reject the null hypothesis if p<0.05.

RQ1. How are instructions and base images used in
Dockerfiles over time?

First, we test the dependence of Dockerfile instructions in
9,455,938 Dockerfiles and its usage per year by performing
a chi-squared test and find that the variables are dependent
on each other (p<0.001) which leads us to conclude that
different amounts of instructions are used from 2013-2020.
In the subsequent subsection of RQ1 we analyze the valid
instructions of Dockerfiles using Figure 2. It should be noted
that we perform filtering to remove instructions that are in
years when they should not exist. These erroneous dates are
due to the author creation timestamps of the commit which
are created incorrectly and lead to uninterpretable results.
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Fig. 3: The decrease of “ADD” usage and increase of “COPY” usage.

Instruction Usage

We analyze the original 11 “standard” instructions intro-
duced with the release of Dockerfile in 2013 and the subse-
quent “new” instructions released from 2014 onwards. We also
attempt to find usage of “INSERT” that was available for a
short period until its deprecation in Docker version 0.4.5, but
find no real usage of it.

In Figure 2 we present four charts broken down into two
trends. In Figures 2a and 2b the standard instructions are
split into two charts based on their increasing and decreasing
trends. In Figures 2c and 2d, the new instructions are broken
into two charts based upon the maximum peak percentage
of instructions of all years so that increasing and decreasing
trends can be visualized. To determine if an instruction ap-
pears more than once in a Dockerfile, we use the “FROM”
instruction as a baseline since it is present in every file — if
the percentage is greater than “FROM”, then it likely appears
more than once in a file and vice versa. Since the percentage
of instructions can have large differences, we present the
percentage of instructions in the log scale for Figures 2a, 2b
and 2d to better visualize trends.

First, we can observe in Figure 2a that all the instruction per-
centages decrease by 2020. However, we should note that the
“RUN” instruction begins at 58.01% in 2013 and drops down
to 37.27% in 2020 — a 20.74% decrease that is larger than
other instructions. Similarly, we also see “ADD” drop 10.46%
from 12.32% to 1.86%. We hypothesize that the reason for
the decrease in “RUN” instructions is because commands
can be combined into multi-line commands, some common
commands are replaced with instructions like “WORKDIR”,
“ENV”, and “USER” which we can see increase in Figure 2b.

In regards to the decrease of “ADD” instructions, it is
likely due to the introduction of the “COPY” instruction which
behaves similar to “ADD” but does not do any post processing
to a file once added to a container. To better visualize this
relationship, we plot in Figure 3 the percentage of “ADD”
and “COPY” instructions over time where we can clearly see
after the introduction of “COPY” in 2014, it surpasses “ADD”
usage by 2016.

In Figure 2b, we see that all instruction usage increases with
“ENV”, “FROM”, and “WORKDIR” appearing to visually
increase at a faster rate than the other instructions. This is
likely due to the fact that “USER”, “ENTRYPOINT”, and

TABLE V: Percentage breakdown of “RUN” instructions into 6
categories.

Dependencies Filesystem Permissions Build/Execute Environment Other
Examples apt-get, yum, npm mkdir, rm, cd chmod, chown, useradd Rscript, node, php locale-gen, su, export
RUN % 44.94 24.44 6.89 6.49 6.27 10.96

“CMD” often appear at the end of Dockerfiles and are only
used once. Notably, “USER” appears to slightly increase
which indicates that more containers may be started as a non-
root user. The increase of “FROM” is also interesting to note
as in 2017, Docker began to support multi-stage builds which
allows for multiple “FROM” statements in a file. From 2017-
2018 we see a sharper slope for “FROM” compared to its
subsequent years.

If we look at the new instructions in Figures 2c and 2d,
we can see that almost all instructions are increasing in usage
except for “ONBUILD”. This is likely due to a decrease in
usage of the “ONBUILD” instruction as it is used specifically
for Dockerfiles that will be a base image for another Docker-
file. Therefore, this trend suggests that many Dockerfiles may
not be used as base images and those that are base images,
do not employ the “ONBUILD” instruction. Also of note is
that the proportion of these instructions present throughout all
Dockerfiles remains small as their sum of their counts account
for less than 1% of all instructions. This suggests that these
instructions are for more niche use cases and possibly for more
advanced users.

Our results of instruction usage cannot be compared di-
rectly to Cito et al. [5] as we do not count comment lines.
Nonetheless, we note that “RUN” is the top used instruction
in our analysis similar to their previous findings. To better
understand how “RUN” instructions operate, we classify the
“RUN” instructions into 4 categories [38] in Table V using
the preexisting classifiers of [5]. Additionally, we manually
classify another 35 commands not present in the top 100 RUN
instructions of the 9,455,938 Dockerfiles.

The classification results of the “RUN” instructions appear
to have a similar order to Cito et al. [5] (2016) and we find
that dependency related commands are still the most used with
“RUN”.

Common Instruction Groups

Seeing that certain instructions are used more often than
others, we wish to determine the most used groups of in-
structions among Dockerfiles. In Table VI, we breakdown the
percentages of the top 10 instruction groups overall from 2013-
2020.

From the table, we can observe that “FROM” is in every
group and “RUN” is almost in every group. What is interesting
to note is the trend of the most popular groups (highlighted
by the bold and underlined cells in the table). From 2013-
2015, the most popular instruction groups of the years con-
tain “MAINTAINER”. But from 2016 onwards, “FROM”
and “RUN” without “MAINTAINER” become more popular.
Notably, “MAINTAINER” becomes deprecated in 2017.

We also notice that from 2018 onwards, the most popular
group contains “CMD”. What is particularly interesting to
note is that Dockerfiles should contain either a “CMD” or



TABLE VI: Overall top 10 instruction groups in percentages by year (top group for the year underlined).

Instruction Grouping 2013 2014 2015 2016 2017 2018 2019 2020
CMD, COPY, ENV, EXPOSE, FROM, RUN, WORKDIR – 0.11 0.46 0.73 0.89 1.12 1.16 1.16
CMD, COPY, ENV, FROM, RUN, WORKDIR – 0.04 0.28 0.91 0.99 1.29 1.17 1.32
CMD, COPY, EXPOSE, FROM, RUN, WORKDIR – 0.08 0.61 1.13 1.94 2.36 2.72 3.03
CMD, COPY, FROM, RUN, WORKDIR – 0.06 0.42 0.81 1.25 2.07 2.59 2.91
CMD, ENV, FROM, RUN, WORKDIR 0.07 0.16 0.25 0.23 0.27 1.04 2.89 3.82
CMD, ENV, FROM, RUN 0.11 0.48 1.83 2.78 2.12 5.06 11.03 14.99
COPY, FROM, RUN, WORKDIR – 0.05 0.25 0.45 0.76 1.27 1.51 1.59
COPY, FROM, RUN – 0.14 0.61 0.92 1.10 1.20 1.14 1.12
ENV, FROM, RUN 1.44 1.07 1.25 1.42 1.48 1.47 1.77 1.10
FROM, MAINTAINER, RUN 7.06 5.09 3.08 2.47 1.55 0.86 0.39 0.84
FROM, MAINTAINER 0.15 0.31 0.29 0.34 0.54 0.72 1.45 2.21
FROM, RUN 3.98 2.62 2.60 3.06 3.39 3.17 2.48 2.85
FROM 0.18 0.33 0.42 0.48 0.68 2.26 1.17 0.50

“ENTRYPOINT” instruction so that no additional flags need
to be specified when running the container [39]. Therefore, it
appears that more Dockerfiles from 2018 onwards should be
able to run as more Dockerfiles contain “CMD” and therefore
no command needs to be passed to the image when starting the
container. Also of note is the larger percentage increases for
“CMD, ENV, FROM, RUN” from 2018-2020. This may be due
to the fact these are the minimal amount of commands needed
to run software using a base image: “FROM” is used to define
a base image, “ENV” is used to set the relevant environment
variables, “RUN” is used to run a set of commands for setting
up the container, and “CMD” is used to setting a default
command to run for the container.

Overall, we see “RUN” in the top groups of instructions in
Table VI with the size of the group of instructions increasing
from 2018-2020. This leads credence to our hypothesis that
“RUN” command usage may have decreased overall because
of the increase of usage of other instructions in-conjunction
with “RUN”. This is also supported by our observation that
the amount of instructions in Dockerfiles over the years remain
relatively constant.

Base Image Usage

As base images are part of the “FROM” instruction (manda-
tory in every Dockerfile) and the basis for creating a Docker
image, we investigate what are some of the most common
occurring base images in Dockerfiles. In Figure 4, we present
the top 20 base images overall which are then categorized and
broken down into their usage over their years. Furthermore,
we also isolate the application/language and OS images of the
top 10 base images and plot them into two charts.

First, we can see that Ubuntu is the most popular base
image among the top 20 overall in Figure 4a similar to
the previous findings of Cito et al. [5] (2016). However,
we note that Ubuntu’s popularity is trending downwards like
Lin et al. [6] (2020). To better characterize the base images
we categorize them into four categories: operating system
images like Ubuntu and Debian as “OS”, programming image
languages like node and python as “Lang”, application image
languages like nginx as “App”, and other images that are base
images like base, build, scratch as “Other”. In total, we classify
55 different kinds of base images into four categories.

We plot the categorizations in Figure 4b, and perform
a KW test on the distributions noting significance with a
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Fig. 4: Percentage of: (a) overall top 20 base images (Note that
“dotnet/core/sdk*” is “mcr.microsoft.com/dotnet/core/sdk”) (b) over-
all top 20 base images categorized per year, and top 10 base images:
(c) broken down by application/language and (d) broken down by
OS.

subsequent MW rank test finding that base image categories
“App” and “Lang” are insignificant with p=0.28 meaning that
trends between application and language images are similar
as opposed to trends between language and OS images being
significantly different. As such, the significance of language
images exceeding OS images in 2018 confirms the results of
Lin et al. [6] one year earlier, it also demonstrates that the
trend of base image usage follows the recommendations of
Cito et al. [5] (2016) to not use OS images as base images
since they can make Docker images larger. Interestingly, we
also note that “Other” has a higher percentage in 2013 which
we attribute to Dockerfiles initially specifying “base” as part
of the “FROM” instruction as evidenced in some 2013 online
articles [40], [41].

Next, we observe the usage of different application/language
images in Figure 4c and OS images in Figure 4d. Most
notably, there are no application/language images in 2013 and
its usage only began in 2014. This is likely due to Docker



TABLE VII: Hadolint rules removed by year.

Removal Year Rule Description
All DL3026 Use only an allowed registry in the FROM image

<2014 DL3020 Use COPY instead of ADD for files and folders.
<2014 DL3021 COPY with more than 2 arguments requires the last argument to end with /
<2014 DL3022 COPY –from should reference a previously defined FROM alias
<2014 DL3023 COPY –from cannot reference its own FROM alias
<2016 DL4005 Use SHELL to change the default shell
<2016 DL4006 Set the SHELL option -o pipefail before RUN with a pipe in it
<2017 DL4000 MAINTAINER is deprecated

Hub being first announced in 2014 to simplify the process for
the distribution of container images [42]. This suggests that
Docker Hub might have been a key role in proliferating the use
of different base images in Dockerfiles. Another observation
that we should note is that OS images appear to have high
usage in the beginning likely due to non-optimized OS initially
being suggested as the base images to run applications as
evidenced in the documentation examples [43]. However,
based on the downward trend of OS images, we hypothesize
that as the ecosystem matures, images become more domain
specific, efficient, and lightweight.

Dockerfile Instructions and Base Images: As the Docker
ecosystem matures, its usage appears to be more streamlined.
More lightweight images are being used as opposed to OS
images. Furthermore, Dockerfiles appear to use a more diverse
set of instructions.

RQ2. How prevalent are code smells in Dockerfiles?
Previous studies use the Haskell Dockerfile Linter

(Hadolint) [44] to detect if Dockerfiles follow best practices.
In this section, we replicate [5]–[7] with a larger dataset to
see how Dockerfile smells may differ. Furthermore, we also
consider when instructions are first introduced as described
in Section V in order to remove smells that may not be
applicable to a year. We outline what we remove in Table VII.
It should also be noted that we are unable to detect DL3012
(Provide an email address or URL as maintainer) for earlier
Dockerfiles that contain “MAINTAINER” instructions due to
being deprecated from Hadolint since 2017 [45].

We begin by observing the overall Dockerfile smell count
over the years in Figure 5 for 9,445,029 blobs. When a KW
test is performed on the years 2013-2020, it is found to be
significant (p<0.001) and with a subsequent MW rank test
all pairs are significant (p ≤6.94e-51). Therefore, we can say
that overall in the latter years of 2019-2020 Dockerfile smells
have decreased. This decreasing trend of Dockerfile smells is
similar to the observations of Lin et al. [6] (2020) and also
Wu et al. [7] (2020) where it is found that newer projects have
fewer smells.

Next, we drill down and observe the top 10 overall Dock-
erfile smells found in Table VIII split into decreasing and
increasing trends as seen in Figure 6.

Dockerfile Smell Trends

Most Dockerfile rules violated are similar to Lin et al. [6]
(2020) except for DL3013 and DL3018 which replaces the
smells of DL3025 (Not using JSON notation for CMD)
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Fig. 5: Number of smells from 2013-2020.
TABLE VIII: Top 10 Overall Dockerfile Smells.

Rule Percentage Description
DL3008 15.08 Pin versions in apt get install
DL3015 11.50 Avoid additional packages by specifying –no-install-recommends
DL3020 10.05 Use COPY instead of ADD for files and folders
DL3003 8.43 Use WORKDIR to switch to a directory
DL4006 8.20 Set the SHELL option -o pipefail before RUN with a pipe in
DL3009 6.97 Delete the apt-get lists after installing something
DL3018 5.16 Pin versions in apk add
DL3013 4.43 Pin versions in pip
DL4000 3.84 MAINTAINER is deprecated
DL3006 3.74 Always tag the version of an image explicitly

and DL3007 (Using the error-prone latest tag) in [6]. It is
interesting to note that version pinning is still a major smell
that appears similar to findings to Cito et al. [5] (2016) and
Lin et al. [6]. Unlike previous findings, however, we note that
version pinning smells are trending upwards.

Dockerfile smells such as using “COPY” instead of “ADD”
appear to be trending downwards which also follows our
observed trend of increased “COPY” usage in Figure 3. It is
also interesting to note that DL4000 is quickly reduced which
suggests that Dockerfiles have removed the “MAINTAINER”
instruction quite quickly.

Of note is DL4006 increasing as it appears to be an obscure
smell that would not be immediately noticeable to a typical
end user that might use piping in their “RUN” command.
Therefore, better user education might be needed to raise
awareness to this issue. The increase of DL3003, not using
“WORKDIR” to change directories, also suggests that better
education of available instructions might also be needed.

Dockerfile Smells: Dockerfile smells appear to be trending
downwards overall. However, version pinning to reduce depen-
dency issues still appears to be a major issue that is increasing
over the years. It is also interesting to note that the smell
of using “COPY” instead of “ADD” is trending downwards
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Fig. 6: Percentage of top 10 Dockerfile smells: (a) increasing and
(b) decreasing.
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Fig. 7: Count of revisions containing Dockerfiles from 2013-2020.

which we also notice follows the trend of increased “COPY”
usage instead of “ADD”.

RQ3. How do Dockerfiles change over time?

To understand how often Dockerfiles are changed, we
present in Figure 7 the count of commits containing Dock-
erfiles grouped by year. We count each commit as a revision
with each repository having at least 1 revision. In the box
plots trending over the years, we see that overall there are
only 3 revisions per year, and 50 percent of revisions have
only 1 revision. However, there is great variation with a
standard deviation of 149 revisions. We perform KW test
finding significance (p<0.001) and MW rank test finding only
the pair 2013 and 2014 insignificant (p=0.99). Thus, we can
also say that there appears to be a lower amount of revisions in
the later years which may be due to having more ready-to-use
Docker images and therefore not needing custom Dockerfiles.

We also include the overall distribution of commit counts
per year with a standard deviation of 149 and find up to 75%
as having 3 revisions and up to the median of 1 which means
there are no changes within a year. The revisions per year
appear low, similar to findings by Cito et al. [5] (2016).

In the subsequent subsections, we analyze the magnitude
and nature of change in Dockerfiles like Cito et al. [5]. For
the data, we retrieve the earliest Dockerfile commit for each
distinct repository with more than one commit and their related
Dockerfile blobs resulting in 1,765,277 unique SHA-1s. To
ensure that the blobs have any lineage, we query the “ob2b”
mapping in WoC to determine if any children exist and find
1,121,849 pairs. We also determine if the parent and children
blob contents can be retrieved, finding the number of blob
pairs to be 1,115,337. To further reduce the pairs, we also
check to see if the parents are children and remove those blobs
resulting in 1,036,546 blob pairs. Noting that there are multiple
pathways from parent to children and wishing to see a more
diverse set of evolving blobs, we select each parent only once
resulting in 848,051 blob pairs.

Due to the computational intensity of calculating the his-
tory from 848,051 blob pairs, we randomly sample without
replacement 16,321 blob pairs using the random seed 69780.
The sample size is determined using Cochran’s formula [46]
as described by Israel [47] with a Z-Score of 2.58, 99%
confidence level, maximum variability of 0.5, and a precision
of 1%.

Inserted Deleted Total
0
2
4
6
8

10
12
14
16

Fig. 8: Number of lines inserted, deleted, and the total count.

To trace the lineage of the blobs, we begin with the 16,321
blobs and query a single path found with the WoC “ob2b”
mapping calculating the lines added and deleted with the
diffstat [48] and noting the lines changed with diff [49]. It
should be noted that we only get the insertion and deletion
difference as we use the unified format of diff. From our initial
starting blob pairs, we observe the differences among 26,858
pairs of blobs and 42,923 distinct SHA-1s.

Magnitude of Change

To understand the magnitude of change, we refer to Figure 8
which contains box plots for lines inserted, lines deleted, and
the total of lines inserted and deleted. We perform a KW test
between the lines inserted and deleted and find that they are
statistically significant (p<0.001). Therefore, we can say for
our sampled changes of Dockerfiles that there are more line
insertions than deletions overall like Cito et al. [5] (2016).

With insertions, there is a mean of 5.14 and standard
deviation of 11.08 with up to 75% of changes having 5 lines
inserted, up to 50% having 2 lines inserted, and up to 25%
having 1 line inserted. In comparison, deletions have a mean of
3.77 and standard deviation of 9.1 with up to 75% of changes
having 3 lines deleted and up to 50% having 1 line deleted.
We see that overall, there are not very many lines changed
as the count of up to 75% of total lines changed is 8 with a
standard deviation of 18.18.
Nature of Change

Next, we look specifically look at the lines that are changed
which include Dockerfile instructions. We break down the
total Dockerfile instructions in Table IX in terms of insertions
and deletions. We also perform KW test on the distribution
of Dockerfile instructions and find them to be statistically
insignificant with p=0.61, therefore we can say that there are
no differences in the instructions that are inserted or deleted.

In Table IX, when the “RUN” is broken down by the
first command executed, we see that dependencies make up
about half of all “RUN” instructions. Interestingly, the other
top instructions also deal with changing files or settings to
run software such as “COPY” to move new files, “FROM”
to change base images, and “ENV” to set new environment
variables. The breakdown of changes also appear similar to
Cito et al. [5] (2016).

Dockerfile Revisions: Dockerfiles have a low amount of revi-
sions per year and revisions appear to slowly trend downwards
from 2013-2020. Within the changes, there are more insertions



Instruction %
RUN 38.93
Dependencies 48.24

Filesystem 22.84

Permissions 7.10

Build/Execute 6.38

Environment 3.00

COPY 12.60
FROM 10.47
ENV 10.12
CMD 5.02
ADD 4.50
WORKDIR 4.19
EXPOSE 3.22
ARG 3.16
ENTRYPOINT 2.63
LABEL 1.40
MAINTAINER 1.23
USER 1.13
VOLUME 1.07
ONBUILD 0.16
HEALTHCHECK 0.09
SHELL 0.05
STOPSIGNAL 0.03

(a) Instructions Inserted

Instruction %
RUN 38.44
Dependencies 49.80

Filesystem 22.32

Permissions 6.21

Build/Execute 6.14

Environment 3.30

FROM 12.58
COPY 11.01
ENV 9.79
CMD 5.93
ADD 4.79
WORKDIR 4.09
EXPOSE 3.02
ENTRYPOINT 2.88
ARG 2.48
MAINTAINER 1.70
LABEL 1.18
VOLUME 1.05
USER 0.81
ONBUILD 0.15
HEALTHCHECK 0.06
SHELL 0.02
STOPSIGNAL 0.01

(b) Instructions Deleted

TABLE IX: Percentage of total Dockerfile instructions that are (a)
inserted and (b) deleted with “RUN” instruction broken down into
categories.

than deletions. The Dockerfile instructions that are changed
or deleted often have to deal with running new commands,
moving new files, changing the base image or setting new en-
vironment variables. Within the “RUN” instruction, commands
dealing with dependencies are the most common.

VII. THREATS TO VALIDITY

With regards to construct validity, we assume that WoC
data is accurately mined. Furthermore, we must consider that
the data cleaning and alignment of the data obtained from
WoC has been done correctly. To address these concerns, we
provide a replication dataset containing source code files from
obtaining, processing, and generating our results. Furthermore,
when parsing Dockerfiles, we assume that they may have
been correctly parsed. However, there may be some slight
inaccuracies due to previous versions possibly being correctly
parsed in previous Docker versions but not the latest version.

For internal validity, we note that the blobs we analyze
may not actually be used in the real world for software
deployments and instead are used for instructional or toy
projects. Therefore, we cannot assume that the hypotheses of
our findings apply to all the blobs in our dataset. Nonethe-
less, the dataset we analyze is extremely large and therefore
those blobs are likely insignificant. Additionally, when we
sample the beginning blobs to get a representative sample
of how Dockerfiles evolve for RQ3, we only consider the
very first Dockerfile blob commit of a distinct repository.
Some Dockerfiles may not have been part of the very first
Dockerfile blob commit. In addition, our findings from the
sample may produce results that are coincidental, but we use
the Cochran formula with simple random sampling to ensure
a representative sample is used.

Finally, we note the threats to external validity. WoC at-
tempts to mine all possible OSS repositories, but is by no

means comprehensive and therefore might not generalize to all
projects. Furthermore, the Dockerfiles are analyzed at a blob
level as opposed to a project level and therefore the trends
presented may also not generalize to data when analyzing on
a per project basis. It should also be noted that only public
repositories are analyzed, and private repositories may create
Dockerfiles differently. Despite these shortcomings, this paper
analyzes a dataset larger than any previous studies and appears
to confirm many findings of previous studies.

VIII. CONCLUSION

Using the largest and most recent (as of December 2020)
Dockerfile dataset known to date, consisting of over 9.4 mil-
lion unique Dockerfiles between 2013-2020, we find similar
trends on a year by year basis confirming observations of
previous studies [5]–[8]. As such, we provide suggestions to
developers who use Docker and write Dockerfiles, and outline
a benefit of our study for the maintainers of Docker.

To support developers, we echo Cito et al.’s [5] (2016)
recommendations to not use heavy OS images which creates
large footprints for containers and to use version pinning for
images and dependencies to avoid future compatibility issues.
Furthermore, for developers wishing to increase adoption of
their technologies, we agree with Lin et al. [6] (2020) that
the upward trend of lightweight application/language images
suggest that ready-to-use images might encourage adoption.

For developers that write Dockerfiles to create images, we
agree with the suggestions of Cito et al. [5], Henkel et al. [8],
Lin et al. [6], and Wu et al. [7] that better tooling and education
is needed to correct Dockerfiles that may produce non-optimal
images. For instance, we find that there has been an increase in
the Hadolint rule DL4006 where piping in a shell environment
does not properly fail a Docker image build.

For the maintainers of Docker, they can observe the effects
of deprecation efforts as well as the adoption of new features
with our dataset, allowing further empirical reasoning about
design decisions in the future which helps improve the overall
software developer experience of using Docker. For example,
we have observed that version pinning Dockerfile smells
are actually increasing (compared to previous studies) which
suggests that creating warnings about version pinning for a
developer when building a Docker image would be beneficial.

We have included a replication package [4] to further
encourage future investigations on Dockerfile theories. Future
works could extend the initial exploration of the Dockerfile
characteristics presented in Section IV to be a more in-
depth analysis. Furthermore, additional definitions of “signal
and noise” when analyzing repositories could be considered.
Although we mitigate the noise of analyzing project clones
(forks) by Dockerfiles on a “central repository” basis, other
possible forms of signal and noise (e.g. engineered software
projects vs homework assignments as defined by Munaiah et
al. [50]) have not been considered. Therefore, using our data
in a future study, more emphasis can be placed on determining
the definition of signal and noise when analyzing Dockerfiles
to further confirm or disprove previous findings.
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