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Abstract Deployed software systems are typically composed of many pieces, not
all of which may have been created by the main development team. Often, the
provenance of included components—such as external libraries or cloned source
code—is not clearly stated, and this uncertainty can introduce technical and ethical
concerns that make it difficult for system owners and other stakeholders to manage
their software assets. In this work, we motivate the need for the recovery of the
provenance of software entities by a broad set of techniques that could include signa-
ture matching, source code fact extraction, software clone detection, call flow graph
matching, string matching, historical analyses, and other techniques. We liken our
provenance goals to that of Bertillonage, a simple and approximate forensic analysis
technique based on bio-metrics that was developed in 19th century France before
the advent of fingerprints. As an example, we have developed a fast, simple, and
approximate technique called anchored signature matching for identifying the source
origin of binary libraries within a given Java application. This technique involves
a type of structured signature matching performed against a database of candidates
drawn from the Maven2 repository, a 275 GB collection of open source Java libraries.
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To show the approach is both valid and effective, we conducted an empirical study
on 945 jars from the Debian GNU/Linux distribution, as well as an industrial case
study on 81 jars from an e-commerce application.

Keywords Reuse · Provenance · Code evolution · Code fingerprints

1 Introduction

Deployed software systems often include code drawn from a variety of sources.
While the bulk of a given software system’s source code may have been developed
by a relatively stable set of known developers, a portion of the shipped product may
have come from external sources. For example, software systems commonly require
the use of externally developed libraries, which evolve independently from the
target system. To ensure library compatibility—and avoid what is often called “DLL
hell”—a target system may be packaged together with specific versions of libraries
that are known to work with it. In this way, developers can ensure that their system
will run on any supported platform regardless of the particular versions of library
components that clients might or might not have already installed.

However, if software components are included without clearly identifying their
origin then a number of technical and ethical concerns may arise. Technically, it is
hard to maintain such a system if its dependencies are not well documented; for
example, if a new version of a library is released that contains security fixes,
system administrators will want to know if their existing applications are vulnerable.
Ethically, code fragments that have been copied from other sources, such as open
source software, may not have licences that are compatible with the released system.
When this problem occurs within proprietary systems, resolution can be costly and
embarrassing to the company.

Many North American financial instutions implement the Payment Card Industry
Data Security Standard (2009) (PCI DSS). Requirement 6 of this standard states:
“All critical systems must have the most recently released, appropriate software
patches to protect against exploitation and compromise of cardholder data.” Sup-
pose a Java application running inside a financial institution is found to contain a
dependency on a Java archive named httpclient.jar. Ensuring that the PCI DSS
requirement is satisfied entails addressing some difficult questions:

– Which version of httpclient.jar is the application currently running?
– How hard would it be to upgrade to the latest version of httpclient.jar?
– Has the license of httpclient.jar changed within the newest version in a

way that prevents upgrading?

We can use a variety of techniques to address these questions. For example, if we
have access to the source code we can do software clone detection. If we have access
to binaries, we can perform clone analysis of assembler token streams, call flow graph
matching, string matching, mining software repositories, and historical analyses.

This kind of investigation can be performed at various levels of granularity,
from code chunks to function and class definitions, to files and subsystems up to
compilation units and libraries. But the fundamental question we are concerned with
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is this: given a software entity, can we determine where it came from? That is, how
can we establish its provenance?

1.1 Contributions

1. We introduce the general concept of software Bertillonage, a method to reduce
the search space when trying to locate a software entity’s origin within a corpus
of possibilities.

2. We present an example technique of software Bertillonage: anchored signature
matching. This method aids in reducing the search space when trying to deter-
mine the identity and version of a given Java archive within a large corpus of
archives, such as the Maven 2 central repository.

3. We establish the validity of our method with an empirical study of 945 binary jars
from the Debian 6.0 GNU/Linux distribution. We demonstrate the significance
of our method by replicating a case study of a real world e-commerce application
containing 81 binary jars.

1.2 Bertillonage and Software Provenance

In the mid to late 19th century, police forces in Europe and elsewhere began to take
advantage of emerging technologies. For example, suspected criminals in Paris were
routinely photographed upon arrest, and the photos were organized by name in a
filing system. Of course, criminals soon found out that if they gave a false name upon
being arrested then their chances of being identified from the huge pool of photos
was very small unless the police were particularly patient or happened to recognize
them from a previous encounter. Alphonse Bertillon, the son of a statistician who
worked as a clerk for the Paris police, had the idea that if suspects could be routinely
subjected to a series of simple physical measurements—such as height, length of
right ear, length of left foot, etc.—then the photos could be organized hierarchically
using the bio-metrics data, and the set of photographs that had to be examined for
a given suspect could be reduced to a small handful. This approach, later termed
Bertillonage in his honour, proved to be very effective and was a huge step forward
in the burgeoning science of criminology (Siegel et al. 2000).

As a forensic approach, Bertillonage also had its drawbacks. Using the specialized
measuring equipment required extensive training and practice to be reliable, and
it was time-consuming to perform. Each of 10 measurements was performed three
times, because if even one measurement was off then the system did not work. Also,
the measurements taken did not have a high degree of independence; tall people
tended to have long arms too.1 In time, the emerging science of fingerprinting proved
to be a much more effective and accurate identification mechanism and Bertillonage
was forgotten. Nevertheless, Bertillon and his other inventions—including the mod-
ern mugshot and crime scene photography—showed how simple ideas combined
intelligently could greatly reduce the amount of manual effort required in forensic

1The interdependence of the Bertillonage bio-metrics was recognized by Francis Galton, and it
inspired him to devise the notion of statistical correlation.
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investigations. Despite its limitations, Bertillonage was considered the best method
of identification for two decades (Houck and Siegel 2006).

Our goal in this work is to devise a series of techniques to aid in determining the
provenance of software entities. That is, given a software entity such as a function
definition or an included library, we would like to be able answer the question: Where
did this entity come from? Of course, most often the answer will be that the entity in
question was created to fit exactly where it is within the greater design of the system,
but sometimes entities are moved around, designs are refactored, new is copied from
old and then tweaked. We would like be able to answer this question authoritatively:
this is version 1.3.7 of the X library; this SCSI driver is a tweaked clone of a driver of a
similar card; most of this function f was split off from function g during a refactoring
effort in the last development cycle, etc. Sometimes, however, our answers will be
best-effort guesses, especially if we do not have authoritative access to the original
developers.

We therefore use the metaphor of software Bertillonage, rather than, say, software
fingerprinting, as we often lack sufficient evidence to make a conclusive iden-
tification. Instead, we use a set of simple and sometimes ad-hoc techniques to narrow
the search space down to a level where more expensive approaches (e.g., a manual
determination, or a slow, exhaustive algorithm) may be feasible.

1.3 Our Previous Report

Compared to the implementation in our previous Software Bertillonage report
(Davies et al. 2011), we have since improved and enhanced our toolset, our corpus,
and our experiments. We have abandoned the source parser that we wrote from
scratch. Instead we use Java’s own compiler, javac, from Oracle’s 1.6.0_20 release
of Java, to analyze source code. We have also switched our bytecode analyzer from
bcel-5.2.jar to asm-3.3.1.jar. Thanks to these improvements we can now
extract more features from source and binary Java artifacts, such as generics, enums,
and inner classes. We obtained a new snapshot of the Maven2 repository to serve
as our provenance corpus. Surprisingly, the Maven2 repository has nearly doubled in
size since our initial report, from 150 GB to 275 GB. We previously used an industrial
case study to explore the feasibility of our main ideas. We now test our improved
techniques and tools with an empirical experiment based on 945 jar files of known
provenance, as well as a replication of the original case study.

1.4 Replication

Data for replication is available at: http://juliusdavies.ca/2013/j.emse/bertillonage/.

2 Related Work

In software engineering research, similar questions relating to development artifact
provenance and attribution have been addressed in various guises. For example,
there is a large body of work in software clone detection that asks the question:
which software entities have been copied (and possibly tweaked) from other software

http://juliusdavies.ca/2013/j.emse/bertillonage/
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entities. Our own work (Godfrey and Zou 2005) on the problem of “origin analysis”
asked: if function f is in the new version of the system but not the old, is it really a
new function or was it merely moved / renamed / merged or split from another entity
in the old version? The emphasis in our work here is to broaden the question even
further. Given the recent advances in the field of mining software repositories, can
we take advantage of the vast array of different software development artifacts to
draw conclusions about the provenance of software entities?

There exist many studies on the origin, maintenance, and evolution of code
clones (Kapser and Godfrey 2008; Krinke 2008; Lozano 2008; Lozano et al. 2007;
Thummalapenta et al. 2009), while others have examined clone lifespan and geneal-
ogy (Kim et al. 2005). The distinction between these studies and our own is that
we study provenance across applications, and we are interested not only in finding
similar entities, but determining where they come from. We are also interested in
matching similar entities when one of them is in compiled (binary) form.

Clone detection methods (such as Kamiya et al. 2002, Livieri et al. 2007), as well as
the tracking of clones between applications (Germán et al. 2009) provided a starting
point for our investigation. Similar to Holmes et al. (2006) we build our own code-
search index.

Di Penta et al. (2010) used code search engines to find the source code that
corresponds to a Java archive (they used the fully qualified name of the class). They
found that their main limitation was the inability to match a binary jar with the
precise version of the source release it came from. Similarly, Hemel et al. (2011)
showed how extracting string literals from binaries to detect clones can work surpris-
ingly well, often out-performing other more sophisticated techniques. Ossher et al.
(2011) employ a technique they call “name-based fingerprints” in their source-based
clone analysis of the Maven 2 Central repository; these fingerprints are a simplified
version (e.g., no inner classes, no return types) of our anchored class signatures.
We consider all of these works to be forms of Bertillonage.

Recently, a line of research on software development “recommender systems” has
arisen (Cubranic et al. 2005; Holmes and Walker 2010; Kersten and Murphy 2005;
Robillard et al. 2010). The goal here is to analyze a given working context—such as
the bug report being worked on, the source code files that have been changed, the
API elements whose documentation has been accessed—and try to infer what other
artifacts (bug reports, API elements, documentation) might be relevant to the devel-
opment task at hand. This is done using historical usage information, which can be
specific to a developer, a team, or use a public history repository. This can be seen as
another instance where is it desirable to characterize software artifacts and perform a
loose matching algorithm on them against a large repository. The matching algorithm
must be loose to be useful, since it is highly unlikely that the exact combination
of artifacts have ever been used at the same time before.

3 A Framework for Software Bertillonage

The goal of software Bertillonage is to provide computationally inexpensive tech-
niques to narrow the search space when trying to determine the provenance of a
software entity. More formally, we define a ‘subject’ as the entity whose provenance
we are investigating. We define ‘candidates’ as a set of entities from a given corpus
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that are credible matches to the subject. A desirable property of Bertillonage is thus
to provide, for any subject, a relatively small set of high-likelihood candidates.

We use the metaphor of Bertillonage—an approximate approach fraught with
errors—rather than a more precise forensic metaphor of fingerprinting or DNA
analysis to emphasize that while we may have a lot of evidence, often we do not
have authoritative answers. For example, one of the problems we examine involves
trying to match a compiled binary against a large set of candidate source files. If we
know the exact details of the creation of the binary—the version of the compiler, the
compilation options used, the exact set of libraries used for linking, etc.—then we can
compile our source candidates accordingly and use simple byte-to-byte comparison.
But in reality the candidate binaries are often compiled under varying conditions,
and this can result in two binary artifacts that have the same provenance yet are not
byte-for-byte equivalent in their binary representations.

It may also be the case that “the suspect is not on file”, i.e., that there may be no
correct match for the subject within the corpus. In our example of anchored signature
matching (described in Section 4.1), we compare Java archives from subject software
systems against the Maven2 repository. However, Maven2 is not a comprehensive list
of all possible versions of all possible Java libraries; it consists only of those library
versions that someone has explicitly contributed. So our subject archive may not be
present within the corpus in any form (which is likely to be easy to determine), or the
archive may be present but not the particular version that we seek. Consequently, we
must always be willing to consider the possibility that what we are looking for is not
actually there.

Thus, instead of precision we take as our goal of software Bertillonage the narrow-
ing of a large search space. We seek to prune away the low probability candidates
leaving a relatively small set of likely suspects, against which we may choose to
apply more expensive techniques, such as clone detection, compilation, or manual
examination. We realize that establishing provenance may take some effort, and that
it may not even be possible in a given situation.

3.1 Bertillonage Metrics

As with forensic Bertillonage, it is necessary to define a set of metrics that can
be measured in a potential subject and that will be relatively unique to it. This is
particularly difficult when trying to match binary to source code, because many of
the original features of the source code might be lost during the compilation; for
example, identifiers might be lost, some portions might not be compiled, source code
entities are translated into binary form (which might include optimizations), etc.

Given the variety of programming languages, we presume that each will re-
quire different Bertillonage metrics. For instance, compilation to Java is easier to
analyze—and contains richer information—than compilation to C++. In turn, C++
binaries maintain more information than compiled C, as C++ maintains parameters
types to support overloading while C does not.

Another important consideration is: what is the level of granularity of the
Bertillonage? To match an entire software system it might not be necessary to look
inside each function/method. But if the objective is to match a function/method, then
the only information available to measure are method bodies and type signatures.
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Bertillonage is concerned with measuring the intrinsic properties of a subject,
usually by considering different kinds of its sub-parts, which we will call “objects
of interest” (OOIs). These measurements can be performed in various ways:

Count-based: Count the number of OOIs that the subject contains, such as number
of calls to external libraries, or uses of an obscure feature (e.g., How many times
is setjmp, longjmp used);

Set-based: Compute a set of OOIs that the entity contains, such as the string literals
defined by this entity,2 the set of classes defined in a package, or the set of methods
in a class;

Sequence-based: Compute a sequence of OOIs in the entity (i.e., preserving the
order), such as the sequence of method signatures of a class, the (lexical) sequence
of calls within a method, the sequence of tokens types, etc.;

Relationship-based: Consider external OOIs that the subject is related to in some
way; for example, what dynamic libraries are used by this program, what
externally-defined interfaces are implemented, what exceptions are thrown?

The dimensionality of possible software Bertillonage metrics also includes the
granularity (code snippet, function / method, class / file, package / namespace),
artifact kinds (source code, binary, structured text, natural language), and the pro-
gramming language (C, C++, Java). A good Bertillonage metric should be computa-
tionally inexpensive, applicable to the desired level of granularity and programming
language, and when applied, it should significantly reduce the search space.

4 Anchored Class Signatures, a Bertillonage Approach

To exemplify the concept of software Bertillonage, we propose a metric that ad-
dresses the following problem: given a Java binary archive, can we determine its
original source code? The most obvious source of information is the name of the
archive itself, i.e., one would expect that commons-codec-1.1.jar comes from
commons-codec, an Apache project, release 1.1.3 However, in practice this does
not always work: some projects do not adhere to consistent naming and numbering
policies, some projects do not bother including version information in their releases,
and sometimes version identifiers are removed altogether when library sources are
copied into the source tree of a consuming application.

Alternatively, we could build a database of exact source-to-byte matches by
compiling all known sources and indexing the results. False positives are impossible
under such a scheme, and thus matches would provide a direct and unquestionable
link back to source code. But false negatives could arise in several ways, among these:
variation of compilers (e.g., Oracle’s javac7 vs. IBM’s jikes 1.22), debugging symbols
(on or off), and different optimization levels. Furthermore, library dependencies
can be difficult to satisfy (especially for older artifacts) making full compilation a
problem. Even without compiler variation, avenues for false negatives remain; for

2The GPL Compliance Engineering Guide recommends the extraction of literal strings to determine
potential licensing violations (Hemel 2010).
3This is analogous to a policeman asking a suspect for her/his name and expecting a correct answer.
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example, the build scripts themselves might inject information at build-time directly
into class files.

The philosophy we propose, software Bertillonage, requires us to seek character-
istics that are easy to measure and compare such that, even if they do not guarantee
an exact match, they will significantly reduce the search space. We are particularly
interested in features that survive the compilation process. For Java, we considered
the following list of attributes that are present in both source and binary forms:

1. The class’s name.
2. The class’s namespace (a.k.a., ‘package’).
3. The inheritance tree.
4. Implemented interfaces.
5. Checked exceptions.
6. Fields.
7. Methods.
8. Inner-classes.
9. Generics.

10. Class, method, and field modifiers (i.e., public, static, abstract).
11. Return types, and method parameters.
12. Relative position of methods and fields in the class.

Many other features are lost during compilation, including comments, import
statements, local variable names, parameter modifiers (such as final), and absolute
position of methods, since line numbers are preserved only when the class is compiled
with debug info.

In a nutshell, we propose a Bertillonage metric for binary Java archives that can
be used to match a binary class file to its likely source file. Not all of the source
code classes may be included in the ultimate binary; for example, test classes are
often excluded, and sometimes a source archive may be split into two or more binary
archives. To match a binary archive, we try to find the source archives with the largest
overlap of classes between the binary archive and a source archive.

Class file obfuscation could thwart Bertillionage, but this depends on the tech-
niques employed by the obfuscation. Our method uses names of classes and methods,
and our method is likely to fail if the obfuscator changes these. But our method
will continue to work if the obfuscation is only renaming local variables and code
reformatting. This is an interesting area of research, and we suspect it will become a
cat-and-mouse game of one-upmanship, where software Bertillionage tools will try
to defeat obfuscators, and obfuscators will continue to improve so that the former
methods cannot defeat them.

4.1 Anchored Class Signatures

Anchored class signatures attempt to provide us with a signature that we can match
classes against other classes. This is achieved by describing the contents of a class
in such a way that one could compare signatures against the same class or a similar
class.

We define the anchored class signature of a class in terms of its own signature
and the signatures of its components. Since classes may contain inner classes, our
formal definition requires two steps. If a class C has methods M1, ..., Mn and fields
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F1, ..., Fn but contains no inner classes, then we define its anchored class signature,
denoted ϑ(c), as a 3-tuple:

ϑ(C) = 〈σ(C), 〈σ(M1), ..., σ (Mn)〉, 〈σ(F1), ..., σ (Fn)〉〉
where σ(a) is the type signature of the class, field, or method. If a class C has methods
M1, ..., Mn, fields F1, ..., Fn, and inner classes C1, ..., Cn, then we define its anchored
class signature, denoted ϑ(c), as a 4-tuple:

ϑ(C) = 〈σ(C), 〈σ(M1), ..., σ (Mn)〉, 〈σ(F1), ..., σ (Fn)〉, 〈ϑ(C1), ..., ϑ(Cn)〉〉
That is, the anchored signature of a class is the type signature of the class itself
(its name, if it is public or not, what it extends/implements), and the ordered
sequence of the type signatures of each of its methods, fields, and recursively, the
anchored class signatures of its inner classes. We say the signature is anchored since
it includes the fully qualified name of the Java class, and in this way our signature
preserves attributes used by Java’s own built-in name resolution mechanism. We
note, however, that when developers copy and paste (clone) complete classes into
their own application, they sometimes alter the namespace declaration of the original
class, in essence relocating the copied logic into a new namespace. Our anchored
approach will be unable to find matches in these cases, but our results should also
possess less noise; for example, very small single-constructor exception-handling
classes that happen to be coincidentally named will not pollute our results.

When building the signature, all fully qualified object types in the decompiled
bytecode (including those in throws clauses) are stripped of their package prefixes.
For example, g.h.I becomes I and java.lang.String becomes String. Java’s
importmechanism is effectively irreproducible, since resolution of wildcard imports
(e.g., import java.util.*) depends on the exact contents of directories and
archive files listed in the CLASSPATH environment variable at the time of compila-
tion.4 To workaround this limitation we remove the namespace component of every
referenced object type. Fully qualified names in source code that are referenced
inline—although rare—are also stripped of their package prefixes, since we have no
way of knowing in the bytecode if the name came from an import statement or from
an inline type reference.

Consider a class file D.java (Fig. 1) and its corresponding decompiled bytecode
(Fig. 2). The Java compiler will insert an empty constructor if no other constructors
are defined, and for that reason the bytecode version contains an empty constructor.
Class D’s signature (Fig. 3) is composed of the type signature of the class, including
the class’s fully-qualified name, the type signature of the default constructor D, and
the type signature of its one method.

4.2 Similarity Index of Archives

To compare two archives we define a metric called the similarity index of archives,
which is intended to measure the similarity of two archives with respect to the
signatures of the classes within them. Formally, given an archive A composed of

4Identifying the class’s own fully qualitifed name is determinate. The indeterminism only arises when
we try to resolve internal references that point to other classes.
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Fig. 1 Source code of a class D

Fig. 2 Decompiled version of a class D to illustrate how the correponding Java bytecode appears to
our tools when we analyze it using the asm-3.3.1.jar bytecode analyzer

Fig. 3 Anchored class signature for D.java & D.class. Both javac-1.6.0_20 and
asm-3.3.1.jar refer internally to constructors as “<init>” rather than the class name
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n classes A = {c1, ..., cn}, we define the signature of an archive as the set of class
signatures generated from the n classes.

ϑ(A) = {ϑ(c1), ..., ϑ(cn)}
We define the Similarity Index of two archives A and B, denoted as sim(A, B), as
the Jaccard coefficient of their signatures:

sim(A, B) = |ϑ(A)
⋂

ϑ(B)|
|ϑ(A)

⋃
ϑ(B)|

Ideally, a binary archive b would have originated in source archive S if sim(b , S) =
1.0. In practice, however, the similarity score of a binary compared to its source
archive is often lower than 1.0, for two reasons: first, there are cases where an archive
contains two or more different archives (e.g., embedded dependencies); second, not
all files in the source archive may be present in the binary archive (such as test
cases, or examples). To address these issues we define two more indices: inclusion
and containment.

4.3 Inclusion Index of Archives

To identify when the subject A is a likely subset of the candidate B, we define the
inclusion index. The inclusion index of archive A in B, denoted as inclusion(A, B),
is the proportion of class signatures found in both archives with respect to the
size of A.

inclusion(A, B) = |ϑ(A)
⋂

ϑ(B)|
|ϑ(A)|

The intuition here is that when the inclusion index of a binary archive A in archive
B is close to 1, then the classes in A are present in B.

4.4 Containment Index of Archives

Similarly, we would like to know if a candidate archive B is contained in the
subject A. We define the containment index of archive A in B, denoted as
containedBy(A, B), as the proportion of class signatures found in both archives with
respect to the size of the candidate archive B.

containedBy(A, B) = |ϑ(A)
⋂

ϑ(B)|
|ϑ(B)|

In this case, when the containment index of a binary archive A with respect to archive
B is 1, then A contains all the classes in B.

4.5 Finding Candidate Matches

Given a candidate archive, we can use the similarity, inclusion, and containment in-
dices to approximate the extent to which archives in our corpus contain identical code
as the candidate, either in binary or source form. The indices also help us understand
the nature of the provenance relationship. Similarity helps us when the candidate is
directly related to its match. Containment helps us when the candidate cloned some
of its dependencies (the candidate is a super-archive), and inclusion helps us for the
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inverse situation, when the candidate is itself a cloned dependency, and other super-
archives include the candidate. All three situations can arise simultaneously when
analyzing even a single candidate, since an archive can clone its dependencies, can
be cloned by others, and, finally, can match relatives of itself. Users of our methods
should prioritize one index over another depending on their specific analytical needs.

Inclusion and containment are simple ratios that report the percentage of
common-code contained in the candidate and the dependency, respectively, and
thus they are simple to interpret. For example, Azureus2.jar (from Vuze, version
4.3.0.6) scores inclusion of 8.9% and containment of 32.5% when compared to
bcprov-jdk14-138.jar. This tells us that Azureus can be seen as containing
32.5% of BouncyCastle (version 138), and, conversely, BouncyCastle can be seen
as containing 8.9% of Azureus. The causality of the provenance is unknown—Who
copied from who? Could code be flowing in both directions?—but the relationship
between these two artifacts is evident, and further manual analysis can unearth the
causality (Azureus copied from BouncyCastle).

The similarity measure is more complicated to understand, since Jaccard is a ratio
of set-intersection to set-union, and thus lacks a natural mapping to provenance,
except at the extreme values (1.0 is a perfect match, 0.0 occurs when nothing
matches). Since non-extreme similarity values contain little inherent meaning, we
interpet similarity as an ordering function: higher scores imply better matches. Thus
we can formalize finding the best match(es) for a binary archive in an archive
corpus using the similarity metric as follows: given a set of archives S = s1, ..., sn (the
corpus), we define the best candidate matches of subject archive a as the subset of
L ⊆ S such that:

∀si ∈ L sim(a, si) > 0 ∧ sim(a, si) = maxsim[S, a]
where maxsim[S, a] is the maximum similarity index of a and the elements in S. In the
ideal case, L has only one member. In practice, however, the corpus often has several
candidate matches with equal maximum similarity scores. We have found several
reasons for multiple archives having the same maximal score: there may be identical
redundant archive copies in Maven2; some archives differ only in documentation
or other non-code attributes; some non-identical archives may simply achieve equal
scores; and the signature of an archive may remain constant across multiple versions
if there are implementation changes but no interface changes. This last case is typical
in minor release updates.

Table 1 Best results based on Bertillonage metrics when the subject archive is asm-2.2.3.jar

|A| |B| |⋂ | |⋃ | sim incl cont Path for each B

22 22 22 22 1.000 1.000 1.000 asm/2.2.1/asm-2.2.3.jar
22 22 22 22 1.000 1.000 1.000 asm/2.2.3/asm-2.2.2.jar
22 22 22 22 1.000 1.000 1.000 asm/2.2.1/asm-2.2.1.jar
22 21 14 29 0.483 0.636 0.667 asm/2.1/asm-2.1.jar
22 91 22 91 0.242 1.000 0.242 jonas/../5.1.0/asm-5.1.0.jar

22 22 8 36 0.222 0.364 0.364 asm/2.2.1/asm-2.2.1-sources.jar
22 22 8 36 0.222 0.364 0.364 asm/2.2.1/asm-2.2.2-sources.jar

The top matches are binary archives; here, 3 versions match perfectly. The bottom matches are source
archives. The expected source package, asm-2.2.3-sources.jar was not present in the corpus
(Maven2)
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We exemplify our approach in Table 1. The subject is the binary jar asm-2.2.
3.jar, and the candidates are binary and source archives in Maven2. As it can be
seen, the perfect inclusion score of 1 matches three different versions (2.2.3, 2.2.2,
and 2.2.1), whereas version 2.1 is more distant (inclusion index 0.636). The perfect
inclusion score of 1 also suggests the larger asm-5.1.0.jar library probably
contains a perfect copy of asm, but repackaged by JOnAS (an application server
bundle). Notice how the filename no longer reflects the version of asm, but the
version of JOnAS. Finally, the source archives with the highest inclusion are versions
2.2.1-sources and 2.2.2-sources. Surprisingly, Maven2 did not contain a
copy of the sources of the version 2.2.3 subject, although it contained a copy of the
binary. This highlights two challenges we are trying to address. First, there is a much
higher concentration of binary artifacts in Maven2 compared to source artifacts.
Second, there is no certainty a particular subject will be found in the corpus, and
so we must find the closest match possible instead.

5 Implementation

5.1 Building a Corpus

To be effective, any approach that implements the Bertillonage philosophy requires
a corpus that is as comprehensive as possible. For Java, the Maven2 Central Reposi-
tory5 fulfills this requirement. Maven2 provides a large public repository of reusable
Java components and libraries under various open source licenses, often including
multiple versions of each component. Maven2 serves as the Java development
community’s de facto library archive. Originally, the repository was developed as a
place from where the Maven build system could download required libraries to build
and compile an application. Because of the repository’s broad coverage and depth,
even competing dependency resolvers make use of it (i.e., http://ant.apache.org/ivy/).

Maven2, as a whole, is unversioned: today’s Maven2 collection will be different
from tomorrow’s, as there is a continual accumulation of artifacts. Our first download
of the Maven2 collection took place in June of 2010 and our second download took
place in July of 2011, over one year later. The repository grew substantially over
this period, nearly doubling in size. This behaviour is unlike the major GNU/Linux
compilations of free and open source software such as Debian, where Debian 6.0 is a
fixed collection that remains essentially static after its official release date.6

5.2 Extracting the Class Signatures

We developed two tools to extract anchored class signatures from Java archives: a
wrapper around javac for analyzing source code (using Oracle’s 1.6.0_20 version
of javac), and a byte code analyzer based on the asm-3.3.1.jar library. Using

5http://repo1.maven.org/maven2/
6Debian pushes critical security updates out to its stable releases. These usually represent the
smallest possible changes necessary to patch the discovered security holes.

http://ant.apache.org/ivy/
http://repo1.maven.org/maven2/
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these tools we were able to consistently process interfaces, classes, methods, fields,
inner classes, enums, and generics.7

When analyzing a source file we first call the parse() method of com.sun.
tools.javac.main.JavaCompiler that is contained inside Java’s tools.jar.
This parses the symbols of the source code using the same logic as the command-
line javac tool, but it stops before resolving dependencies and compiling bytecode.
Once this is done, we can recursively visit the class’s symbols to extract fields,
methods, and inner classes. We also perform several canonicalizations to ensure
signatures are extracted consistently, including:8

– Remove explicit sub-classing of java.lang.Object. Sometimes developers
explicitly declare that a particular class “extends Object” and javac faithfully
reports back this fact. But all Java classes implicitly extend java.lang.Object
according to the Java specification, so there is no point including this redundant
information.

– Always mark interface methods as public. Developers are free to leave off
the public keyword on interface methods as a convenience, since all inter-
face methods are public according to the Java specification. However, we re-
introduce the public keyword if it is missing to make the signature consistent
with what is in the bytecode.

– Consistently deal with the strictfp keyword. If the class is marked as
strictfp then all its methods will be marked as strictfp in its bytecode,
even if this modifier is missing in the source code for those same methods.

The approach we apply to bytecode is similar: we call the asm-3.3.1.jar
bytecode analyzer to visit all fields, methods, and inner classes, and we perform
various canonicalizations to keep the bytecode signatures consistent with source
signatures. When this process completes for both of our two examples, D.java, and
D.class, we should possess a class signature identical to Fig. 3.

Through the course of writing these tools we noticed a challenging asymmetry
with how Java source files relate to their compiled representations. A source file will
always contain at least one class, but it may contain several. A class file, however,
contains the bytecode for at most one complete class. Class files never include their
own inner classes, which are stored as separate files. For our tools this meant our
source analyzer, when analyzing a single file, might output many top-level class
signatures. On the other hand, our binary analyzer, when pointed at a single file,
often needed to scan the archive or directory in question for additional files before it
could build a single signature.

Consider the code example in Fig. 4, A.java. This small Java program contains
only 11 source lines of code (SLOC) (Wheeler 2010), and yet it compiles into 7
separate class files. As shown in Table 2, A.java contains three anchored signatures.
Even our baseline technique, where we calculate simple binary SHA1 fingerprints for
each class, is affected by this asymmetry: we first must concatenate the outer class and

7We were unable to process beta implementations of generics sometimes found in Java 1.4 class files
of a few brave bleeding edge developers from that time.
8Our source code contains the full list of signature canonicalizations that we apply. The source code is
available to download from our replication package: http://juliusdavies.ca/2013/j.emse/bertillonage/.

http://juliusdavies.ca/2013/j.emse/bertillonage/
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Fig. 4 Mapping source files to binary files is not always straight-forward in Java. This source file,
A.java, despite its simplicity and small size, results in the creation of 7 distinct class files due to the
inner-classes A1, A2, A3 and the anonymous class on line 16, as well as the sibling-classes B and C

Table 2 A.java, when analyzed by our tool, generates 3 signatures, and compiles into 7 class files

One source file Three signaturesa Seven class files

A.java (See Fig. 4) 1. public class A A.class
Runnable r;
public <init>()
class A1 A$A1.class
public <init>()

class A2 A$A2.class
public <init>()

class A3 A$A3.class
public <init>()

ignored anonymous inner-class A$1.class

2. class B B.class
<init>()

3. class C C.class
<init>()

In Java any given source file contains at least one complete class definition, whereas a binary file
contains at most one complete class definition. This asymmetry significantly complicated our own
signature-extraction tool’s implementation
aThese signatures are copied verbatim from the output of our extraction tool after analyzing the
A.java example (Fig. 4), and the class files were generated by running Oracle Java 1.6.0_20’s javac
against the same A.java file
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all its inner classes before running the SHA1 algorithm against the resulting binary
data.

5.3 Matching a Subject Artifact to Candidates

The source and bytecode tools we developed to extract the signatures are employed
both in the construction of a corpus index, as well as the generation of queries to find
matching candidates. The two phases are described below.

Building the Corpus Index: we scan every source and binary archive within the
Maven2 repository, including archives within archives. For each source and com-
piled class file we compute its signature using the steps described in Section 5.2.
To improve response time for finding matches, we index each signature using its
SHA1 hash.
Finding Matches: we are interested in finding what archives have matching
classes with the subject, and what these classes are. To perform this step
efficiently we use the following algorithm:

1. For each class present in the subject, find its matching classes (with identical
class signature) in the corpus.

2. Group the union of all matching classes (for all the classes in the subject) by
their corresponding archive. This will result in a list of all archives that have
at least one matching class with the subject, and for each archive, the list of
matching classes with the subject.

At this point we can now compute the similarity, inclusion, and containment
metrics of the subject archive, compared with each of the archives that have at least
one matching class. Table 1 shows an example where a subject artifact (asm-2.2.
3.jar) is matched to candidate artifacts within the corpus.

Note that even in an exact match the archive signature similarity index might not
be equal to 1. This is because the source package might contain some source Java files
that are not included in the binary jar, such as unit tests. However, every class in the
binary archive should be present in the source archive, unless bytecode manipulators,
or other post-compilation processes alter the binary.

Nonetheless, even automatic code generation is likely to generate a well-defined
set of classes every time. Our Bertillionage system already considers any output from
these generators to be “copies” of each other. An improved Bertillionage system
would have to flag the common classes created by a generator as special, and every
time such copy is found, immediately mark its origin as known, without having to
check every other jar for matches. In fact, we see this as the next step in Software
Bertillionage: to create a curated corpus of artifacts whose provenance is well known.
Any candidate will first be run against this corpus, and only if not match is found, run
against a the universal corpus (such as the one described in this paper).

5.4 Evaluating the Extractor and Exploring Maven2

Initially we iteratively coded, tested and improved our extractor by applying it
against complete binary and source archives from a handful of notable Java projects.
These included OpenOffice, Glassfish, Xerces, Xalan, Tomcat, Eclipse, JBoss, the
Rhino JavaScript engine, among others. From across these diverse projects we
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identified 50 particularly challenging source and binary pairs against which our tool,
at various points, failed to match the source and binary signatures. All of these test
files can be found in the test-pairs directory of our tool.

These 50 pairs became essentially our unit tests, and at this time only 2 of
these pairs fail to match, both from Xalan. Releases of xalan.jar continue to be
compiled using a rare and hard-to-find IBM 1.3.1 Java compiler that is over 10 years
old. This compiler exhibits some strange behaviour with abstract classes that happen
to implement additional interfaces: the compiler overriddes interface methods by
“pulling” them down into the abstract class. Since our tool is compiler-agnostic,
there is no way for us to compensate for this signature-modifying behaviour. The
other failure comes from a Xalan auto-generated Java class that is literally named
CUP$XPathParser$actions. Our tool assumes the $ (dollar-sign) character is
reserved for file names of inner-classes. Our assumption failed in this aforemen-
tioned case, but fixing this problem would require significant effort on our part, as
the assumption represents a core design decision within our tool. We believe similar
usage of $ in class names to be extremely rare in general, as Oracle/Sun discourages
such use in the Java Language Specification:

The $ character should be used only in mechanically generated source code or,
rarely, to access preexisting names on legacy systems. Gosling et al. (2005)

We decided to evaluate the extractors that we had built to further validate our
tools, as well as to explore the nature of what is actually stored in the Maven2
repository. To do so, we needed a set of binaries for which we had “ground truth”.
Consequently, we limited ourselves to those binaries in the repository that had a
corresponding source code file in the same directory; that is, if the name of the
binary archive was name.jar, then we required there to be a file named name-
sources.extension in the same directory, where extension is one of .zip, .jar, .tar, .war,
or .tgz.

We picked a random sampling of 1,000 such Java binaries archives from Maven2.
Given the size of Maven2—there were 144,049 unique binary packages at the time
the work was done—the size of this sample would give us a margin of error of 4%
with a confidence level of 99%. Each binary archive was comprised of one or more
Java classes; within our sample set, we found that the median number of classes
per binary archive was 10, with an observed minimum of 1 class and an observed
maximum of 2,438 classes.

Naively, we expected that we should be able to find all of the binaries with a
perfect similarity Index, and that we should also be able to find the source of each.
We now discuss the results of our evaluation.

5.4.1 Binary-to-Binary Matching Results

For each of the 1,000 archives in the sample set—which of course we knew to exist
within the repository—we computed its similarity with every other binary archive in
the repository. Happily and unsurprisingly, we found that in every instance they did
indeed match themselves with a similarity index value of 1.

To investigate the amount of duplication within Maven, we then asked: for each
archive in the sample set, how many binary archives in the Maven repository matched
it with a similarity index of 1? We found that the median number of exact matches in
our sample using the similarity index measure was 5; that is, the binary occurred five



Empir Software Eng

Number of Binary-To-Binary Matches per Type of Metric
C

ou
nt

0
1

5
10

50
10

0
50

0
10

00

Similarity Inclusion Containment

Fig. 5 Number of top-matches found in the binary-to-binary experiment. The different metrics had
a median of 5 or 6 matches, but they had long tails, suggesting a lot of duplication of some jars in the
sample

times within the repository, either on its own or contained within another archive.
However, we also found that many archives occurred a lot more often; the maximum
number within our sample set was 487 for servlet-api-2.5-6.1.12.jar.9

We also considered the inclusion and containment measures for our sample set.
Inclusion and containment occur when one archive is a superset of another; this is
often the result of an archive owner deciding to include dependent archives within
it, to ease subsequent deployment. By our definition, inclusion and containment are
inverses of each other: inclusion(A, B) = containedBy(B, A).

Figure 5 summarizes the results of all three measures on our sample set. For most
jars, the number of matches was small (median 5), but a few jars had very large
number of matches. This was usually because there were either many copies of the
archive, or the signature of the archive matched several versions (i.e., the original
source code had not changed signature in several versions).

When the top containment index contains many matches this suggests that this is
a “super-jar” that contains classes found in other archives, not only the one sought
(they include their dependencies in the same jar). When the top inclusion index

9We suspect a file named servlet-api-2.5.jar is the true origin of this large equivalence class
of perfect matches. JSP & Servlet technologies have long been an important part of Java’s popularity
in servers for over 10 years, and servlet-api-2.5.jar is a critical interface library, originally
published by Sun Microsystems, which all Java web and application servers must implement,
including Tomcat, JBoss, Glassfish, Jetty, and many others. The 6.1.12 in this case probably comes
from a version of Jetty. The Jetty project tends to rename its own critical dependencies so that they
contain Jetty’s own version number alongside the original dependency’s version number.
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returns many matches, this suggest that the classes in a binary archive tend to be
embedded in many other jars.

As we expected, inclusion and containment had longer tails than the similarity
index. In our sample set, the archive with the largest number of inclusions was
easybeans-example-pool-1.1.0-M1b-JONAS.jar with 864 matches (i.e., it
contains 864 other archives), and the archive that was contained most often by other
archives was maven-classpath-plugin-1.2.6-jar-with-dependencies.
jar with 2732 inclusions (i.e., it is fully contained within 2732 other archives). Maven
reliability and duplication is discussed in Section 6.4.3.

5.4.2 Binary-to-Source Matching Results

For each of the 1,000 archives in the sample set we computed its similarity with every
source archive in the repository. While we satisfied ourselves that our extractors
worked as expected, the exploration of the Maven repository yielded some surprising
results:

We classify the result of a search into three three categories:

1. The correct match was among those with the top matching similarity index (966
cases out of 1,000).

2. The correct match had a lower similarity index than some other archives (30
cases).

3. The algorithm failed to suggest any matches (4 cases).

In 966 of the 1,000 archives in the sample set, the correct match was among those
with the top similarity index. The median similarity index of a binary archive and
its corresponding source archive was 1.0. However, there were several cases where
the correct source match had a surprisingly low similarity index, with the lowest in
our sample set being 0.0290. Low similarity indexes typically indicate that dependent
archives have been added within the binary version of the archive; for example, the
source Java files in rampart-integration-1.5.1.jar have 12 signatures, yet
its binary version contains 231 signatures (those of classes it uses as dependencies,
and that are embedded in the jar to avoid having to independently install them in
the running environment). The distribution of the top number of source packages
matching the top inclusion index is shown in Fig. 6.

If there are multiple top matches for a given archive—that is, if there are
multiple archives with the same maximal inclusion index when compared to the
candidate archive—then a more detailed examination of them must be performed.
Typically, this means that there are multiple versions of the archive that have an
identical interface; that is, the implementation may have evolved between versions
but the interface stayed consistent. In our sample set, we found that the minimum
number of top matches was 1, and the median was 4. However, there were a few
cases where the number of top matches was large; the most extreme case was
maven-interceptor-1.380.jar for which we found 158 different versions from
1.237 to 2.0.1.

We were not able to match any source in 4 cases. These were all small archives
consisting of between one and three classes each, and in each of these cases the
compiler, or other bytecode manipulators had added various fields and methods that
were not actually in the source code. While we are aware of this phenomenon, our
extractor does not explicitly handle such fields and methods.
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Fig. 6 Matching sources: number of matches for each metric

And finally, we noted that in 30 cases, the top match was not the correct match.
Manual inspection suggests that in these cases the binary jars had embedded within
them external dependencies from other archives whose numbers exceeded those
of the source itself. For example, org.apache.felix. http.bundle-2.0.2-
sources.jar contains only one Java file, yet its binary equivalent org.apache.
felix.http.bundle.2.0.2.jar contains 295 signatures (in 442 .class files);
other binary packages with a higher inclusion index were servlet-api-2.5
(contributing 145 signatures) and jetty-6.1.*, contributing 13 classes. This brings
up an interesting philosophical question: what is the source of a given binary? Is it
the source it was created from, or the dependencies it contains? Certainly all of them,
and our method shows this.

Of these 30 cases, 10 source files have a containment index of 1.0 (their binary
jar perfectly contains all the signatures in the source file). In other words, while
the expected source was not the top match for the similarity index, it was for the
containment one.

5.4.3 Summary of Exploration and Tool Evaluation

In summary, to evaluate our tools and to explore the problem space of the Maven
repository, we applied our techniques to 1,000 binary archives, randomly chosen
from Maven but with the constraint that the sources also be present in Maven. In
96.6% of the cases (margin of error of 4% with a confidence level of 99%) we were
able to match the binary of a source using (one of) the top Similarity Index match(es).
In 3% of the cases the best match was not the correct source (but the correct one had
a slightly lower similarity index and was part of the set of candidates). In 0.4% of the
cases, we could not match the source at all.
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Overall, our metrics-based approach appears to be effective for significantly
narrowing the search space when looking for matches for another binary (the median
number of top matches was 5). In the few occasions it failed to find a match (0.4%),
the archives were very small and the compiled classes were built using features (e.g.,
direct bytecode manipulation) that our parser was not able to process.

When matching binary packages to their corresponding source, we identified
several commonalities. In many cases, the binary and the source were a 1-to-1
match, but in many other cases, the binary was a superset of the source archive
(it contained the dependencies that it required to function). In this case, the con-
tainment metric is useful: it shows us that the binary package contains an identical
set of signatures as those in the source packages. We found it interesting that in few
cases, the best-match was not the corresponding source, but one of its dependencies.
In other cases, the best match was a subset of the binary archive. This is common
when a source archive is split into several binary packages, or when there exists a
large number of test cases that are not included in the binary. In these cases the
inclusion metric is the best to use.

6 Evaluation

To validate any provenance technique we need a sample of artifacts from outside
our corpus, and we need “ground truth” about these artifacts. We can then apply our
technique to determine provenance information about each of the sampled artifacts
and compare the answers returned with the ground truth. To control for holes in our
corpus, we assume that byte-oriented fingerprinting techniques are valid. By apply-
ing byte-oriented fingerprinting techniques alongside our Bertillonage technique, we
introduce a baseline against which our new technique can be objectively measured.
With the validity of our technique firmly established, we can then use our corpus and
our sampled artifacts to further explore the following research questions:

RQ1: How useful is the similarity index for narrowing the search space to find an
original binary archive when provided a subject binary archive?

RQ2: How useful is the similarity index for narrowing the search space to find an
original source archive when provided a subject binary archive?

RQ3: How reliable is the version information stored in a jar file’s name?

6.1 Setting

6.1.1 Building A Corpus

We mirrored the Maven2 central repository (from July 25th to July 30, 2011) using
the following command:

rsync -v -t -l -r mirrors.ibiblio.org::maven2 .

We used the ibiblio.org mirror because repo1.maven.org does not al-
low unknown parties direct connections via rsync; repo1.maven.org also bans
HTTP crawlers. Our download from ibiblio.org averaged 350 KB/second. Since
we retained our initial 150 GB mirror from a year earlier the rsync command
needed to only download the remaining 125 GB of artifacts, requiring 4 days to
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download. We re-ran the rsync command on the final day of downloading (June
30th) to ensure that our version was more or less identical to the ibiblio mirror at
that time. Thus we obtained over 275 GB of jars, zips, tarballs, and other files.

Maven contained 360,00010 different archives (.tar, .zip, .tar, .war, .tgz,
.ear, and .jar). Many of them contained other archives within them. When
uncompressed, they resulted in 130,000 source archives (a source archive contains
at least one Java file), but only 110,000 were unique. It contained 650,000 binary
archives (each contained at least one class file), but only 140,000 were unique. These
archives contained 7,140,000 Java files (1,650,000 distinct), and these generated
920,000 unique signatures.

We processed 19,780,000 class files (2,430,000 distinct)11 which generated
1,510,000 distinct signatures. We observed there are 590,000 (or 39%) fewer distinct
signatures among our source files compared to our class files. This is despite the
observation that a typical source archive often contains more signatures than its
corresponding binary archive, since the source archive is more likely to contain unit
tests. This discrepancy suggests Maven contains many binary archives for which there
is no source code, a fact we confirmed previously in Section 5.4.

We used the Canada Western Research Grid (2012) to extract these signatures.
The extraction took approximately 8 hrs, which was equivalent to 325 hrs of a single
CPU. Once the signatures were extracted, a PostgreSQL database was created from
the results; the database was 11 GB in size (including indexes). Bulk loading the
compressed data (pre-sorted) directly from disk into two tables required 30 mins on
an Intel Core i3 laptop with a 7200 RPM hard-drive. Creating five single-column
indexes required 90 mins. A final 3 hrs was spent pre-computing distinct signature
tallies for each jar file. In total 5 hrs were spent creating the database from the
extracted data.

Initial bertillonage queries of our database ran very slowly, taking several minutes
per jar file analyzed. Our WHERE clauses contain long chains of OR conditions, e.g., a
typical SQL query from our tool looks like WHERE sig=class1 OR sig=class2
OR sig=class3..., and may include several thousand of these OR conditions,
one for each class in the jar file. We realized that PostgreSQL’s query optimizer,
when planning these huge WHERE clauses, was erroneously assuming full-table scans
would run faster than index scans. We tuned PostgreSQL’s query optimizer to
avoid full-table-scans whenever possible by setting enable_seqscan = off in the
configuration file. This resulted in most queries taking less than one second, with
the slowest queries requiring at most 60 s. Section 6.5 contains additional concrete
performance details about our implementation.

6.1.2 Experimental Subjects: 945 Jar Files From Debian 6.0

To obtain a sample of artifacts outside our corpus we looked at the Debian
GNU/Linux distribution. Many Java libraries are compiled into discrete, installable

10Values are rounded to nearest 10,000.
11We only count outter classes. Class files containing a $ (dollar-sign) character in their name are
assumed to be inner classes, and are not included in these tallies. For example, only 3 of the class
files listed earlier in Table 2 would count: A.class, B.class, and C.class, since these do not
contain $ in their names.
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packages in this large operating system. The packages, called Debs, include name,
version, and dependency information that is recorded by Debian maintainers. These
maintainers often possess familiarity and expertise related to the packages they
oversee, thus we are confident the provenance information recorded by these experts
is of high quality, and can be considered reasonably close to ground truth. The
Deb format can be used to package any type of installable application, not just
Java applications, but for our purposes we looked only at packages containing Java
libraries. We chose the most recent stable release, Debian 6.0 “Squeeze”, released
on February 6th, 2011, from which to collect packaged Java artifacts.

Debian 6.0 contains over 1,750 Java jar files. However, in some cases we noticed
the provenance information recorded by the Debian package maintainers was
nuanced and complex, and required time and effort to properly understand. For
example, one particular Debian package, libgdata-java_1.30.0, was specified
as version 1.30.0, and yet the jars inside this package were marked with a variety of
version numbers:

– libgdata-java_1.30.0-1_all.deb/gdata-core-1.0.jar
– libgdata-java_1.30.0-1_all.deb/gdata-docs-2.0.jar
– libgdata-java_1.30.0-1_all.deb/gdata-photos-1.0.jar
– libgdata-java_1.30.0-1_all.deb/gdata-youtube-2.0.jar
– etc...

None of these jars included the version ‘1.30.0’ within their own names. To make
our analysis easier, we decided to filter out all jars that did not include the same
version number in their name as that of their containing package. In this way we
reduced our sample from 1,750 jars down to 945. We believe this filtering further
improves the ground truth of our sample, since the version is specified in two places
for each jar. In a way, each jar possesses two ‘votes’ regarding its encoded version
information.

We are not attempting to validate byte-oriented fingerprint techniques, such as
SHA1. We assume byte-oriented fingerprint techniques work, and we use them as a
measuring stick from which to compare our signature based Bertillonage technique.
We assume fingerprint approaches achieve 100% precision, and that false positives
are impossible.12 For fingerprints of archive files, any match is considered equivalent
to ground truth, even if the matched name is different, since they are byte-for-byte
identical. Similarily, for fingerprints of archive contents, any match that scores 1.000
similarity is considered equivalent to ground truth. Fingerprint matches of archive
contents scoring 0.999 similarity or less are not considered ground truth, and if they
represent the best match, we consider these as experimental results for validation,
rather than ground truth for measuring against.

6.1.3 Replicating An Industrial Case Study

In a related research project (Davies 2011) we performed a license and security audit
of a real world e-commerce application. The audits had to be performed against
both the binary and source code forms of these included libraries. Before we could
conduct the audits, we needed to determine the provenance of all included libraries.

12The chance of a birthday collision from SHA1 in our data set is less than 10−18.
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In this study we replicate the provenance phase using 81 jars from the other project’s
replication package.13

Accurate and precise provenance information forms an important foundation for
many types of higher-level analyses. Such analyses include, among others, license
audits, security vulnerability scans, and patch-level assessments (as required by the
PCI DSS security standard). A license audit of software dependencies must reflect
the reality that software licenses sometimes evolve (change between releases). Simi-
larily, known security holes in libraries will affect specific releases or version ranges.
The PCI DSS requirement #6, “All critical systems must have the most recently
released, appropriate software patches,” cannot be satisfied without knowledge of
the existing patch versions. In this vein we believed that conducting a license audit
and a security audit would provide real value to the developers of the e-commerce
application, while also providing us with a chance to test our Bertillonage approach
in the field.

6.1.4 Measuring Results

We define one byte-oriented index (“Fingerprint Index”), and one Bertillonage in-
dex (“Anchored Class Signature Index”). Using the indices, we define four matching
techniques (two per index). Here are the four matching techniques, followed by a
shorthand tag we use later to refer to them.

Fingerprint Index, Identical Archive (sha1-of-jar)
Our fingerprint index stores SHA1 fingerprints of all archive files, as well as all
source and class files. Therefore, an easy way to query the corpus is to simply take
the SHA1 fingerprint of the subject archive and see if anything matches. A match
found in this way represents a byte-for-byte identical copy of the subject archive.
We also use this index to filter out duplicate results reported by the other matching
techniques.
Fingerprint Index, Identical Contents (sha1-of-classes)
This matching technique scans a subject archive to generate a series of SHA1
fingerprints, one per class scanned. We then query the corpus using the same
similarity, inclusion, and containment metrics described earlier. But instead of
comparing sets of anchored class signatures, we compare sets of bytecode. Some
pre-processing is required to properly account for inner-classes, since we want a
change to the inner-class’s bytecode to effect the outer class’s fingerprint, even in
cases where the outer class did not change.
Anchored Class Signature Index, Binary-To-Binary (bin2bin)
Here we use our Bertillonage technique to find matches as described in Section 4.5.
For each jar file in our sample we extract the signatures from the bytecode, and
we build a query from these signatures. The query is configured to only examine
matching binary signatures in the corpus.
Anchored Class Signature Index, Binary-To-Source (bin2src)
Again we use our Bertillonage technique to find matches as described in Section 4.5.
We examine the bytecode in each jar file, but in this case the query is configured
to examine matching source signatures in the corpus.

13http://juliusdavies.ca/2011/icse/src/

http://juliusdavies.ca/2011/icse/src/
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We classify matches into one of three quality levels: High Quality (HQ), Low
Quality (LQ), and No Match. We further divide each quality level into subcategories
that communicate our criteria for evaluating match quality. These subcategories also
allow us to report some cross-tabulated results, so we can directly compare results
between the four matching techniques.

1. High Quality (HQ): To be considered a high quality match, the top-ranked set
of matches (those tied for best similarity score) must contain one candidate that
satisfies one of the following four conditions:

– HQ1. Identical archive: The candidate is a byte-for-byte identical match,
regardless of name or version information encoded in the candidate’s name.

– HQ2. Identical contents: The contents of the candidate (class files) all match
byte-for-byte with the contents of the subject. There are no unmatched
contents in either the candidate or the subject. These matches are consid-
ered successful regardless of name or version information encoded in the
candidate’s name.

– HQ3. Expected match: The candidate’s name and version information is
identical to the expected name and version information.

– HQ4. Version off by final digit: The candidate’s name is identical, and the
version information is only different in its final character, e.g., a match of
ezmorph-1.0.4.jar against ground truth of ezmorph-1.0.6.jar is
considered a high quality match.

2. Low Quality (LQ): Any match that is not classified as high quality is classified as
low quality. We further subdivide low quality matches into two types:

– LQ1. Version off by many digits: The candidate’s name is identical but
the version information is different, and this difference is not just in the
final digit, e.g., a match of serp-1.13.1.jar against ground truth of
serp-1.14.1.jar is considered a low quality match. Also matches where
we knew the candidate’s name was an older name for the library are
also classified in this category, e.g. xml-apis-2.0.2-sources.jar was
classified as a LQ1 match against crimson-1.1.3.jar rather than a LQ2
match because we happened to know the library had changed its name from
‘crimson’ to ‘xml-apis.’

– LQ2. Not useful: The candidate’s name and version information did not
provide information useful for provenance analysis. Due to the anchored
nature of our signatures, these are not false positives. Remnants of past
cloning, branching, or merging often show up in many of our queries, but
these fragments usually sit near the bottom of the returned results, with low
similarity scores. However, when a hole in our corpus precludes the correct
match, these fragments can achieve the highest score. We say these results
are not useful for provenance analysis. Users may nonetheless find these
results useful for other purposes, such as evolution, cloning, or descendant
analyses.

3. No Match: While not technically a type of match, this is an important category. In
all experimental and case-study results a portion of the sampled artifacts result
in no matches at all.
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6.2 Results I: The Experiment

This section reports results of analyzing 945 jar libraries extracted from Debian
6.0 Squeeze to answer the research questions formulated at the beginning of this
section. By treating version and name information encoded in the 945 Debian jar
files as a good approximation of ground truth, we can compare our signature-based
Bertillonage technique against a baseline technique.

Our techniques consider only the top match according to our similarity metric,
as described in Section 4.2. Often the top similarity score is shared by several
artifacts in our corpus. As evidenced by the results, 2-way, 3-way, and 4-way ties
for best similarity are the norm, rather than the exception. However, to understand
what we mean by a tie, we must mention briefly what we consider a single artifact.
Our earlier exploration of the Maven2 corpus (see Section 5.4) shows surprising
redundancy and duplication of archives within the repository. Users are likely
not interested in knowing all two hundred path locations of an identical artifact.
We filter out these duplications and instead report only ties that either have a
different SHA1 binary fingerprint than other matches in the tie, or a different
name.

In some cases choosing a top match based on the inclusion metric rather than
similarity performs better. To keep our experiment simple, we consider these to
be wrong matches. We anticipate future researchers will improve on our results
by tuning the match criteria to factor in both similarity and inclusion scores when
selecting the top match, perhaps at a cost of larger ties.

6.2.1 The Baseline: Binary Fingerprint Matches

Table 3 shows the results of our baseline technique, a straightforward SHA1 index of
jar files and class files. Slighly over half the Debian sample, 490 jars out of 945 (52%),
contained one or more class files that were identical to a class file in the Maven
corpus. Each match returned an average of 2.4 candidates that tied for top similarity.
The match with the most ties among our baseline results is shown in Table 4. The
average score of the 490 best similarity scores was 0.685.

Only 2 out of the 945 jar files proved to be identical complete archive copies from
the Maven corpus (row HQ1). We suspect the main reason for such a low match
percentage (less than 0.5%) in this category may be Debian’s policy of recompiling
all jar files from original sources. Jar files record timestamps of contained files, and
Java class files tend to have timestamps set to the moment they were compiled. This
alone will cause Debian jar files to differ, at least in a few bytes, from their Maven
counterparts. A further 201 out of the 945 jar files matched with identical contents
(HQ2). These 201 matches, while externally different, were internally identical with
respect to contained class files. Of course the 2 identical jar files also matched
according to contents.

A remaining 287 jar files had partial matches, with similarity scores less than 1.0.
Of these, 180 matches, when evaluated against our ground truth, scored as high
quality matches (HQ3 to HQ4), and 107 matches scored as low quality matches (LQ1
to LQ2). Finally, for 455 jars, there were no matches at all using the binary fingerprint
technique.
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Table 3 The baseline results based on binary SHA1 fingerprints of 945 Debian jars

Type of match Count Similarity # of ties

Min Mdn Max Min Mdn Max

High quality matches 383
HQ1. Identical archive 2 1.0 1.0 1.0 1 1 1
HQ2. Identical contents 201 1.0 1.0 1.0 1 1 35
HQ3. Expected match 131 0.014 0.680 0.997 1 1 13
HQ4. Version off by final digit 49 0.033 0.500 0.977 1 1 4

Low quality matches 107
LQ1. Version off by many digits 85 0.001 0.116 0.964 1 1 25
LQ2. Not useful 22 0.003 0.025 0.206 1 1 18

No matches 455

Total matches: (52%) 490 Average: 0.685 Average: 2.4

6.2.2 The First Test: Binary-to-Binary Anchored Signature

Table 5 shows the results of our first Bertillonage test: binary-to-binary anchored
signature matching. In the Debian sample, we found that 793 jars out of 945 (84%)
contained one or more class files with an identical anchored signature as a class file in
the Maven corpus. Each match returned an average of 3.5 candidates that tied for top
similarity. The average score of the 793 best similarity scores was 0.890. The highest
quality match with the lowest similarity score (0.046) is shown in Table 6.

We found that 710 matches, when evaluated against our ground truth, scored
as high quality matches (HQ1 to HQ4), and 83 matches scored as low quality
matches (LQ1 to LQ2). Finally, for 152 jars, there were no matches at all using
anchored signature binary-to-binary matches. In general our Bertillonage approach
outperformed the baseline, with nearly twice as many high-quality matches (710 vs.
383), fewer low-quality matches (83 vs. 107), and far fewer non-matches (152 vs. 455).

As expected, all binary-identical matches also scored 1.0 for signature-similarity,
as shown in the two crosstab rows (HQ1 to HQ2). Any non-perfect score in these

Table 4 35 artifacts in the Maven2 corpus tied for top place with identical bytecode to plexus-
component-annotations-1.0-beta-3.0.7.jar using binary fingerprint (SHA1) matches

Tie # Similarity Version

1. 1.0 plexus-component-annotations-1.0-alpha-1.jar
2.–17. 1.0 alpha-2 - alpha-17
18. 1.0 plexus-component-annotations-1.0-beta-1.jar
19.–27. 1.0 1.0-beta-2 - 1.0-beta-3.0.6
28. 1.0 plexus-component-annotations-1.0-beta-3.0.7.jar
29.–34. 1.0 1.0 - 1.2.1.3
35. 1.0 plexus-component-annotations-1.2.1.4.jar

Notice how candidate #28 contains the same name as the subject archive, hence this match could
be classified as ‘HQ3. Expected Match.’ However, we consider all 1.0 similarity matches of SHA1
fingerprints as ground truth, hence this match’s classification as ‘HQ2. Identical Contents.’ A
relatively small jar, plexus-component-annotations-1.0-beta-3.0.7.jar contains only
3 classes
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Table 5 Experiment 1, bin2bin results—out signature-based approach applied to 945 Debian jars

Type of match Count Similarity # of ties

Min Mdn Max Min Mdn Max

High quality matches 710
HQ1. Exact (sha1 of jar) 2 1.0 1.0 1.0 1 1.5 2
HQ2. Exact (sha1 of *.class) 201 1.0 1.0 1.0 1 3 86
HQ3. Expected match 442 0.046 1.0 1.0 1 2 30
HQ4. Version off by final digit 65 0.038 0.889 1.0 1 1 23

Low quality matches 83
LQ1. Version off by many digits 67 0.014 0.414 1.0 1 1 14
LQ2. Not useful 16 0.002 0.027 0.807 1 1 4

No matches 152

Total matches: (84%) 793 Average: 0.890 Average: 3.5

rows would signify a critical bug in our tool, since a binary-identical class-file
should also possess an identical signature. One interesting difference, however, is
the increase in ties in the crosstab rows. The anchored signature approach exhibited
a higher median (3 vs. 1), a higher maximum (86 vs. 35), and the overall average tie
rate was also higer (3.5 vs. 2.4). These differences highlight the tradeoff anchored
signature provides: higher recall (e.g., 793 vs. 450 total matches), but in exchange the
user must do more work analyzing the results (3.5 ties to examine per query vs. 2.4).

6.2.3 The Second Test: Binary-to-Source Anchored Signature

Table 7 shows the results of our second Bertillonage test: binary-to-source anchored
signature matching. In the Debian sample, we found that 660 jars out of 945 (70%)
contained one or more class files with an identical anchored signature as a source
file in the Maven corpus. Each match returned an average of 2.9 candidates that tied
for top similarity. The average score of the 660 best similarity scores was 0.773. The
highest quality match with the lowest similarity score (0.001) is shown in Table 8.

We found that 527 matches, when evaluated against our ground truth, scored as
high quality matches (HQ3 to HQ4), and 133 matches scored as low quality matches
(LQ1 to LQ2). Finally, for 285 jars, there were no matches at all using anchored
signature binary-to-binary matches. In general our binary-to-source Bertillonage
approach outperformed the baseline, with 40% more high-quality matches (527
vs. 383), fewer non-matches (285 vs. 455), but increased low-quality matches
(133 vs. 107).

Table 6 Low similarity scores can nonetheless convey important provenance information

Match # Similarity Inclusion Match

1. 0.046 1.0 javahelp-2.0.05.jar
2. 0.041 0.889 javahelp-2.0.02.jar

The best match here was javahelp-2.0.05.jar, but only 9 of 195 signatures matched our subject
(jsearch-indexer-2.0.05.ds1.jar), resulting in a low similarity score. We classified this as HQ3.
“Expected match,” since it resided inside a Debian package named javahelp2_2.0.05.
ds1-4_all.deb, and so name and version did match as expected. Because this match also
possessed a 1.0 inclusion score, we suspect the Debian maintainers are splitting a large jar (which
exists in Maven) into several smaller jars (which do not)
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Table 7 Experiment 1, bin2src results—our signature based approach applied to 945 Debian jars

Type of Match Count Similarity # of Ties

Min Mdn Max Min Mdn Max

High Quality Matches 527
HQ1. Exact (sha1 of jar) n/a n/a n/a
HQ2. Exact (sha1 of *.class)
HQ3. Expected match 443 0.001 1.0 1.0 1 2 77
HQ4. Version off by final digit 84 0.018 0.750 1.0 1 1 2

Low Quality Matches 133
LQ1. Version off by many digits 109 0.001 0.326 1.0 1 1 20
LQ2. Not useful 24 0.002 0.136 0.886 1 1.5 20

No Matches 285

Total matches: (70%) 660 Average: 0.773 Average: 2.9

6.3 Results II: Industry Case Study, A Replication

Table 9 shows the results of our three matching techniques for the replicated case
study. The 81 e-commerce jars represent a close approximation of those found in
a proprietary web application. All 81 were downloaded from original open source
project websites directly, or if such was not possible, they were built from tagged VCS
versions. Figure 7 shows these results alongside the results of the Debian experiment.

A close look at some of the HQ4 matches from the case study revealed the data set
includes library versions missing from the corpus’s collection. Table 10 shows these in
detail. Unfortunately, two scenarios show that some jar versions will probably never
be found in any corpus:

1. The application developers may choose to use an experimental or “pre-released”
version of a library that is unlikely to appear in any formal corpus. We observed
one example of this in our study (stax-ex-1.2-SNAPSHOT.jar).

2. Developers may download libraries directly from an open source project’s
version control system, for example, should they require a bleeding edge feature
or a particularly urgent fix. In these cases the jar is built directly from the VCS
instead of from an official released version.

For 44 of the 81 binary jars (54%), our method found several candidates
in the corpus that tied for best similarity score of 1.0. In all cases the candi-
date set covered a contiguous sequence of versions, as shown in Table 11, save
for holes in the corpus’s collection. Of these 44 tied matches, the exact match
was present for 42 cases. The remaining two cases, xpp3_min-1.1.4.jar and

Table 8 The best (and only) match for ant-apache-log4j-1.7.1.jar, a jar containing a single class, had
an extremely low similarity score

Match # Similarity Inclusion Match

1. 0.001 1.0 org.apache.ant.source_1.7.1.jar

The source archive contained 791 signatures. We classified this as HQ3. “Expected match,” since
the name and version were correct. We suspect ant’s own internal build script creates these tiny
single-task jar files
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Table 9 These three sub-tables show the results from our industrial case study replication based on
81 open source jars

Type of match Count Similarity # of ties

Min Mdn Max Min Mdn Max

sha1-of-class/Industry-81
High quality matches 74

HQ1. Exact (sha1 of jar) 54 1.0 1.0 1.0 1 2 14
HQ2. Exact (sha1 of *.class) 9 1.0 1.0 1.0 1 1 5
HQ3. Expected match 4 0.006 0.758 0.965 1 1.5 4
HQ4. Version off by final digit 7 0.016 0.500 0.962 1 1 12

Low quality matches 3
LQ1. Version off by many digits 1 0.038 0.038 0.038 1 1 1
LQ2. Not useful 2 0.002 0.031 0.059 1 1 1

No matches 4

Total matches: (95%) 77 Average: 0.903 Average: 2.8

bin2bin/Industry-81
High quality matches 77

HQ1. Exact (sha1 of jar) 54 1.0 1.0 1.0 1 3 16
HQ2. Exact (sha1 of *.class) 9 1.0 1.0 1.0 1 1 9
HQ3. Expected match 6 0.933 0.994 1.0 1 1 2
HQ4. Version off by final digit 8 0.133 0.915 1.0 1 1 12

Low quality matches 4
LQ1. Version off by many digits 1 0.132 0.132 0.132 1 1 1
LQ2. Not useful 3 0.002 0.023 0.068 1 1 1

No matches 0

Total matches: (100%) 81 Average: 0.926 Average: 3.6

bin2src/Industry-81
High quality matches 55

HQ1. Exact (sha1 of jar) n/a n/a n/a
HQ2. Exact (sha1 of *.class)
HQ3. Expected match 41 0.168 1.0 1.0 1 1 2
HQ4. Version off by final digit 14 0.054 0.865 1.0 1 1 12

Low quality matches 13
LQ1. Version off by many digits 12 0.061 0.491 1.0 1 1 1
LQ2. Not useful 1 0.068 0.068 0.068 1 1 1

No matches 13

Total matches: (84%) 68 Average: 0.812 Average: 1.5

sun-jaxws-2.1.3-20071218-api.jar, we classified as HQ4 matches. In both
cases an exact match was not present in the corpus.

In general the results are similar to our Debian experiment, except in one respect.
Less then 0.3% of the Debian sample are identical jar copies (HQ1). Whereas in
this data set of archives downloaded directly from project websites, rather than
recompiled by Debian, the number of identical copies (HQ1) stands at 54 (67%),
with another 9 (11%) identical contents matches (HQ2). This suggests fingerprint
approaches may be useful in industry settings, at least for binary-to-binary matching.
This may be for two reasons. First, Maven appears to often contain identical copies
to those located on the upstream project websites, and industry developers may be
directly downloading dependencies from the project sites. Second, industry may be
using the Maven repository to resolve their dependencies, anyway.
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Fig. 7 A comparison of match quality by data set. Left: Debian’s 945 jars. Right: Industry’s 81 jars.
The Industry set receives a boost of 77% binary-identical matches compared to Debian’s 21%. Aside
from this boost, the results appear similar

Another small difference arises in the binary-to-source results. These results do
not receive any benefit from the “binary-identical boost” described in Fig. 7, and
yet the high-quality matches (HQ3 to HQ4) comprise 68% of the total, noticeably
higher than the 56% found in the Debian sample. We also note that all of our
provenance techniques, including the simple baseline approaches, enjoyed improved
performance when used on the e-commerce jars.

We can also compare the results of our replication against the original results
from our previous report. Compared to the previous report we were able to achieve
one additional match (since the artifact, chiba.jar, had since appeared in Maven),
and in several cases the cardinality of top-matching ties were reduced. The example
shown in Table 12, wicket-ioc-1.4.0.jar, was the most dramatic reduction in
top-matching ties, from 31 ties in our 2011 paper, compared with 11 ties in this paper.
By reducing the number of top-matching ties, we reduce the amount of additional
work end-users of our tools must employ after-wards, in order to further refine their
results to a single match.

6.4 Summary of Results

6.4.1 RQ1, How Useful is the Similarity Index for Narrowing the Search Space
to Find an Original Binary Archive when Provided a Subject Binary Archive?

RQ1: The similarity index is highly useful at narrowing the search space to find
original binary archives, as is the fingerprint index. In fact, the baseline fingerprint
approach produces even narrower search spaces (e.g., 2.4 ties per result on average
compared to 3.5). But the narrower search space comes with a cost of reduced
recall. This trade-off lies at the heart of Bertillonage. In our study we considered
two index approaches: byte-oriented, and Bertillonage-oriented. Both approaches
have important benefits. For example, with the byte-oriented approaches, a 1.0

Table 10 Holes in the corpus:
the suspect is not on file, but
we can still isolate close
relatives

Correct jar Sim Close match
(not in corpus) (from corpus)

jaxws-api-2.1.3.jar 1.0 jaxws-api-2.1.jar
stax-ex-1.2-SNAPSHOT.jar 1.0 stax-ex-1.2.jar
streambuffer-0.5.jar 1.0 streambuffer-0.7.jar
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Table 11 Example of multiple
matches with similarity=1

Similarity to asm-attrs-2.2.3.jar Artifacts from corpus

1.0 asm-attrs-2.1.jar
1.0 asm-attrs-2.2.jar
1.0 asm-attrs-2.2.1.jar
1.0 asm-attrs-2.2.3.jar

match is authoritative, whereas with our signature techniques (and presumably any
Bertillonage approach), even a 1.0 match may only indicate a strong relationship to
the subject, rather than a definitive answer of provenance. Since performance and
storage costs imposed by each index are relatively small (both in index creation,
and query execution), a hybrid approach would not impose undue resource or per-
formance costs. By adopting a hybrid approach, implementors can benefit from the
certainty offered by the byte oriented approaches, while also enjoying the improved
recall and superior match quality we observed in our Bertillonage approaches.

6.4.2 RQ2, How Useful is the Similarity Index for Narrowing the Search Space
to Find an Original Source Archive when Provided a Subject Binary Archive?

RQ2: The similarity index is useful the majority of the time to narrow the search
space to find original source archives, although we observed inferior performance
compared to binary-to-binary matching. We suspect two factors are contributing to
the inferior performance.

First, our corpus contains only 1, 650, 000 Java source signatures compared to
2, 430, 000 compiled class signatures. This results in fewer source archives available
for matching. For example, batik-util-1.6.jar matched no source archives,
and yet for RQ1 the same jar file matched 23 distinct binary archives, ranging from
similarity 1.0 down to 0.005. Second, fundamental problems about source archives

Table 12 Similarity scores for case study (2011) & replication (2012) for wicket-ioc-1.4.0.jar

Top matches 2011 2012

wicket-ioc-1.3.0-beta2.jar 1.000 0.538
wicket-ioc-1.3.7.jar 1.000 0.538
wicket-ioc-1.4-rc1.jar 1.000 1.000
wicket-ioc-1.4.0.jar 1.000 1.000
wicket-ioc-1.4.3.jar 1.000 1.000
wicket-ioc-1.4.8.jar 1.000 0.667

[etc... 26 additional top-ranked 1.000
matches in 2011 case-study omitted.
Only 8 of these 26 omitted matches
scored 1.000 in the 2012 study.]

Total # of top-ranked tied matches: 31 11

Here we compare a single result from our original 2011 case-study (Davies et al. 2011) against the
same result in this 2012 replication. With our improved signature-extraction tool, we are able to
narrow the number of ties reported back for wicket-ioc-1.4.0.jar from 31 ties down to 11
ties. Similarity scores tend to drop off faster as versions diverge when we analyze jars using our newer
signature-extractor, since the newer tool adds more features such as generics and inner-classes to the
signatures
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pose difficult obstacles in this area. We often assume a simple 1-for-1 mapping
between sources files and binary files, but the reality is more complex. Techniques
such as unit tests, code generation, bytecode manipulation can thwart the 1-for-1
assumption. Also, metrics based on set similarity have a hard time when build scripts
produce several small binaries instead of a single large one (see Table 8 for an
example of this).

To conclude, our bin2src experiment suggests we can match the sources the ma-
jority of the time, even with an inferior corpus. In future work we envision employing
a better corpus (with fewer holes) so we can better isolate the fundamental problems
of binary-to-source matching.

6.4.3 RQ3, How Reliable is the Version Information Stored in a Jar File’s Name?

To address RQ3 we took two snapshots of the Maven repository and checked to see
how reliable the file-name could convey the version information of the archives. We
explored the Maven corpus to see if any jars were mislabelled or were duplicates.
We did this by a bitwise comparison of the jar files to each other and checking
for inconsistent file names. 99.1% of the jars were unique. 0.83% of the corpus
was exact duplicates, that is there were multiple names for the same file. Of the
exact duplicated 30.7% did not share the same project name. Most of these have
some version numbering but are not consistently named (abbreviations, license
annotations). Many files are identical with different names because there was no
change in that archive between versions.

We compared snapshots of Maven at two different times: June 15, 2010 and July
30, 2011. We found that the reliability of Maven had increased by 0.03% in terms
of duplication. Our first Maven snapshot had 0.86% exact duplicates while our last
snapshot had 0.83% exact duplicates, this reduction of 0.03% was a statistically
significant difference (Student T-test p-value < 0.001). Thus Maven’s reliability as
an authoritative repository has increased over time.

6.5 How Fast are the Techniques?

One of the primary goals of software Bertillonage is to employ fast, light-weight,
and approximate techniques to quickly narrow searches for provenance. In other
words, software Bertillonage queries should take seconds rather than hours. We
compare our approach’s performance to D-CCFinder’s 2006 result (Livieri et al.
2007), since D-CCFinder illustrates state-of-the-art performance characteristics of
exhaustive clone-detection. Livieri et al. performed two experiments in their paper.
In the 1st experiment they analysed the complete FreeBSD project for code-cloning
between sub-modules. In the 2nd experiment they indexed the FreeBSD project, and
then analyzed a separate, smaller project, SPARS-J, to see if any of SPARS-J’s code
could be traced back to FreeBSD. The 2nd experiment is of interest to us, since the
aims, design, and execution of that experiment are similar to our own, although they
employ source-to-source analysis exclusively, whereas our tools also allow binary-to-
binary, binary-to-source, and source-to-binary analysis.

SPARS-J’s source code contained 47,000 lines of C code. D-CCFinder’s analysis
ran in 40 mins using a customized verison of CCFinder distributed to 80 Pentrium IV
3.0 ghz workstations in a university lab, each configured with 1 GB of RAM. Our own
tools ran on a single dual-core Intel Core i3 2.26 GHz laptop with 8 GB of RAM. To
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Table 13 Source-to-source analysis of commons-collections-3.2.1-src.zip (with |a| = 469)

|b | |a ⋂
b | Similarity Provenance candidates

73 19 0.036 commons-collections-2.1-sources.jar
76 19 0.036 commons-collections-2.1.1-sources.jar
249 112 0.185 commons-collections-3.0-sources.jar
268 201 0.375 commons-collections-3.1-sources.jar
469 469 1.000 commons-collections-3.2-src.zip
274 274 0.584 commons-collections-3.2-sources.jar
274 274 0.584 commons-collections-3.2.1-sources.jar

|b | |a ⋂
b | Similarity Clone candidates

1925 274 0.129 openjpa-all-2.0.0-sources.jar
1925 274 0.129 openjpa-all-2.0.1-sources.jar
2326 274 0.109 openjpa-all-2.1.0-sources.jar
101 4 0.007 commons-beanutils-1.8.0-sources.jar
101 4 0.007 commons-beanutils-1.8.1-sources.jar
101 4 0.007 commons-beanutils-1.8.2-sources.jar
101 4 0.007 commons-beanutils-1.8.3-sources.jar
300 4 0.005 prettyfaces-jsf2-3.2.1-sources.jar
300 4 0.005 prettyfaces-jsf2-3.3.0-sources.jar

These results, achieved in 6.169 s on an Intel core-i3 laptop, help us roughly compare performance
against Livieri et al.’s D-CCFinder (Livieri et al. 2007), where analysis of a 47,000 line C project was
analyzed in 40 mins using 80 Pentium IV computers running in parallel (in 2006). We believe our
results and performance numbers make a strong case for software Bertillonage as an effective initial
approach for clone and provenance analysis, after which additional resource intensive methods can
be applied

roughly compare our performance against the D-CCFinder result, we ran source-to-
source analysis using commons-collections- 3.2.1-src.zip, which contains
58,000 lines of Java code, and thus can be considered similar to SPARS-J in terms
of size. Uncompressing the source archive required 0.171 s. Signature extraction of
the sources required 5.275 s. Running the query took 0.723 s. In total the analysis
required 6.169 s. The results of the query are shown in Table 13. This small example
illustrates software Bertillonage’s strengths: useful results are found quickly from
within a massive set of possible matches. But the results also can require further
analysis: in this case separating the results into “provenance candidates” and “clone
candidates” required human expertise; and realizing that the 3.2.1-sources.jar
match does not contain JUnit tests, whereas the 3.2-src.zip archive does (im-
proving its similarity score), also required additional analysis.

We also collected performance data on our indexing of Maven2, as well as our
experiments on the Debian and E-Commerce Jars. Our aim in collecting this data

Table 14 Signature Generation Rates (Intel core-i3 laptop)

Signature type Creation rate, non-compressed files

Fingerprint, SHA1 15,250/s × 19,780,000 = 22 min
Anchored class signature, Java bytecode 3,450/s × 19,780,000 = 96 min
Anchored class signature, Java source 330/s × 7,140,000 = 361 min

As this table shows, anchored class signatures for source files are the slowest to create. Maven
contains 19,780,000 class files and 7,140,000 source files
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Table 15 Performance comparison of the 4 techniques processing all jars (945 Debian + 81 Industry)

Provenance technique Signatures + Results Seconds

Mdn Avg SD Mdn Avg SD

Fingerprints, sha1-of-jar 3.0 2.8 1.1 0.254 0.261 0.032
Fingerprints, sha1-of-classes 57.0 151.8 258.4 0.405 0.558 1.058
Signatures, bin2bin 79.0 188.8 290.6 0.286 0.674 1.483
Signatures, bin2src 68.0 151.4 260.5 0.240 0.342 0.470

All techniques performed very quickly, with bin2bin the slowest, requiring on average 2/3rds of a
second per jar analyzed

was simply to show that anchored class signatures are fast enough to be very usable in
almost all cases we encountered! We are not trying to prove any particular run-time
complexity of our approach, since the queries involved are straight-forward database
lookups.

As Table 14 suggests, scanning the complete Maven2 repository on the laptop
would require 6 hrs to scan the 7,140,000 source files, and 1.5 hrs to scan the
19,780,000 binary files (our current toolset does not skip duplicates). The binary
fingerprint scan would require 20 mins. The reality, however, is slower, since these
rates do not include time required to decompress zip, jar, and .tar.gz archives.14

The time required to generate queries is similarly affected by these rates, since each
signature in the query must be first extracted from the subject archive.

To help us understand our performance data we developed a very simple model
that we believe represents a lower-bound on the amount of work the database must
perform:

1. Each signature in the query must be examined by the database.
2. Each row in the output must have also been examined by the database.

Presumably the database performs a large amount of intermediate work inbe-
tween these two stages joining various tables and sub-selects, but this simple model
allows us to visualize the performance information we are most interested in: (1)
How big is the Jar file we are analyzing? (2) How many matches did we find? and (3)
How long did it take? Table 15 presents aggregates of our performance data using
this model, and Figs. 8 and 9 provide a complete visualization. We ran all experiments
three times, and took an average timing from the three runs. On our laptop the 1st
execution tended to run four times slower than subsequent executions; we suspect
this may be due an aggressive caching policy within the PostgreSQL database engine.
Since each run only executes approximately 4,000 queries, we suspect PostgreSQL is
able to cache significant portions of the results inbetween runs.

To summarize, anchored class signatures exemplify software Bertillonage: they
are simple, approximate, and significantly faster than exhaustive clone-detection
techniques. And they are effective. With most queries requiring on average 2/3rds
of a second, our anchored class signatures implementation could be feasibly offered
to programmers within an Integrated Develompent Environment (IDE) such as
Eclipse (e.g., right-click on a jar, click Bertillonage...). Thanks to previous exhaustive
techniques, such as D-CCFinder, it was feasible for programmers, researchers, and

14Unfortunately, we did not instrument our tools to collect unzip timings.
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Fig. 8 A closeup on the fastest
75% of the bin2bin queries
(divided into quartiles), with
q1=fastest, q2=medium
fastest, and q3=medium
slowest. We plot execution
time against a combined tally
of results returned plus the #
of signatures in the query. The
tally models a lower-bound on
amount of work the database
needs to perform

Fig. 9 The wide-angle view
of the bin2bin query
performance (all four
quartiles), with q1=fastest,
q2=medium fastest,
q3=medium slowest, and
q4=slowest. We plot
execution time against a
combined tally of results
returned plus the # of
signatures in the query.
The tally models a
lower-bound the amount of
work the database needs to
perform. The query for
aspectjtools-1.6.9.jar
in the case study took nearly
22 s to execute on average. It
contains 2,810 signatures and
its query returns 668 rows
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other stakeholders to run clone-analysis against very large systems. But they needed
a strong case to justify the time and resource utilization. With faster light-weight
Bertillonage methods, such as the anchored class signatures offered here, provenance
analysis can begin to support stakeholders who want to know, as opposed to only
those who need to know.

6.6 Threats to Validity

This section discusses the main threats to validity that can affect the studies we
performed.

In particular, threats to construct validity may concern imprecision in the mea-
surements we performed. Our logic for detecting Java and class files in the Maven2
repository relied on accurate detection of .java and .class files, as well as .jar,
.ear, .war, .zip, .tar.gz, .tar.bz2, and .tgz archives. No other search
patterns were employed, and thus some archives may have been missed. This threat
is diminished thanks to the very large amount of data we managed to extract from
just those nine search patterns.

Threats to internal validity arise primarily from our technique for verifying a
correct match: we visually check the version number in the names of jars and zip files.
To address this threat, we sampled 945 jars with known provenance information from
Debian, and we also conducted a thorough byte-by-byte comparison of all our jars.
One threat to internal validity is that we rely on authoritative file-names instead of
other information like tags found in version control systems (VCSs). We hypothesize
that developers involved in the creation and/or packaging of open source libraries for
Debian and for the Maven2 repository strive to publish correct version information,
since dependency management systems rely on such information.

Threats to external validity concern the generalization of our results. Our sample
of 945 Debian jars attempts to minimize this threat, but the Debian collection
may be atypical, for example, most Java developers choose to develop and deploy
applications to the Windows platform. Could the Debian sample be missing jars that
are more popular on Windows? We believe the large size of our Debian sample
mitigates this threat. We postulate there is a strong tradition of platform-independent
development within the Java community. Such a tradition, if it exists, would further
lessen the risk of any significant body of Windows-specific or Mac-specific Java
archives being missed by our sample. Another threat to our external validity comes
from Maven’s own composition: is Maven’s repository a good sample of open source
software in the Java eco-system? Given its critical position in industry with respect
to Java dependency resolution (even unrelated dependency resolvers such as Ivy use
the Maven2 repository), we believe it is representative. We have one complaint about
its composition: it contains too many alpha, beta, milestone, and release-candidate
artifacts that are likely of little interest to integrators.

7 Discussion

What is provenance? Is name and release number alone a suitable representation of
provenance for our purposes? Suppose a given jar is authoritatively known to be
named foo and to be release x.y.z. Our method assigned the highest similarity score
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to this single candidate, foo-x.y.z.jar, for over 60% of the subject jars in our case
study. But can provenance really be boiled down to a small sequence of characters,
hyphens, digits and dots. Does foo-1.2.3 constitute provenance? This question is
important, since our technique assumes it.

Fortunately, for the majority of the jars in this study, and perhaps for the
majority in “current circulation” among Java developers, this notion of provenance is
sufficient. As a thought experiement, imagine asking random undergraduate students
enrolled in Introduction to Computer Programming at any university to download the
oro-2.0.8.jar Java library. In all likelihood the vast majority would download
the same artifact, even those completely unfamiliar with Java. Java developers often
manage to avoid name and version collisions among their reusable libraries.

However, for some jars, this notion of provenance is insufficient. The underlying
assumption with respect to name and release number is that the combination of these
two attributes will always result in a distinct set of software code, an authoritative
snapshot, frozen in time. Among the 1026 jars studied (945 + 81), we observed three
challenges to a foo-1.2.3 notion of provenance:

1. Jars that, during their build process, copy classes from other jars. For example,
vreports.jar contains copies of classes from itext.jar.

2. Jars with historically unstable provenance, perhaps due to corporate acquisitions,
or even internal restructurings within a company. The Sun/Oracle jar named
xsdlib.jar is an example of this. Various project websites provide conflicting
testimony regarding the jar’s origins. Each of these projects appears to have
taken control of, or at least contributed to, xsdlib.jar’s development at some
point in its history. The answer may very well be a combination of the projects we
observed, which each project contributing to different phases of xsdlib.jar’s
evolution. In cases such as these, our Bertillonage results can resemble a hall of
mirrors. More expensive analysis methods, such as sending questions to project
mailing lists, or analyzing version control repositories are required.

3. Altered jars, e.g., a particular foo-1.2.3.jar, may contain 10 classes, whereas
another jar with the same name and release information may contain only 9
classes. In some cases these 9 are a proper subset of the 10. Perhaps a user of
the library has customized it by adding or removing a class. Which archive is
authoritative in this case? We have examples of this in our data.

In the face of these challenges our Bertillonage approach was surprisingly fruitful.
Our simple Bertillonage metric could readily accommodate #1 (emcompassed jars).
Challenges #2 (unstable provenance) and #3 (altered jars) always required additional
narrowing work, and yet our approach nonetheless still revealed when these partic-
ular challenges were occurring. Rather than reinforce our initially narrow notions
of provenance, thanks to the simplicity of our metric, and particularly thanks to an
immense (and messy) data source such as Maven2, our study outlined what future
provenance research must tackle.

7.1 A Foundation for Higher Analyses

Developing, deploying, and maintaining software systems can involve many diverse
groups within—and external to—an organization. Each of these groups may require
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different knowledge about the software systems they are involved with. For example,
testers, developers, system administrators, salespeople, managers, executives, audi-
tors, owners, and other stakeholders may have specific questions they need answered
about an organization’s software assets. A salesperson may have a technically
demanding client that insists on a specific release of a particular library. The security
auditor wants to make sure no libraries or copy-pasted code fragments contain
known security holes. The license auditor wants to know if her license requirements
are being fulfilled. The manager wants to know how risky an upgrade to the latest
release of a popular object-relational database mapping library might be. As noted
in Section 6, provenance forms a critical foundation upon which these higher level
analyses rely. Without reliable provenance information in place these stakeholders
cannot even begin to find answers to their questions.

Provenance information is also important to the software developers responsible
for importing and integrating libraries and code fragments into their software
systems. Therefore name and release information is often encoded directly into an
artifact’s file name (e.g., oro-2.0.7.jar). But sometimes developers may omit
the release numbering, or they may mistype it. Also, as we noted earlier, in some
cases an artifact internally encompasses additional artifacts, rendering the file name
inadequate for communicating the versions of the encompassed releases. For these
reasons, higher level analyses cannot depend on filename alone.

The specific metric we introduced here, anchored signature matching, will by no
means be the final word on software Bertillonage. But we found our simple metric
to be effective. For the 945 Debian jars, our approach was able to supply high quality
provenance information for over 75% of the subject archives, including complex
cases where an archive encompassed other archives. Of course some manual effort
was required in our case study to narrow all matched candidates to single exact
matches, but the original filename was correct for the majority of these, and so the
manual effort was minimal. Our result minimizes the risk of relying on filenames
exclusively when performing higher level analyses that depend on provenance. We
also note the excellent binary-to-binary results we obtained can serve as a bridge to
improved binary-to-source results: with a single binary match, manually locating the
corresponding source archive (especially in the open source world) is trivial. This
“bridging” idea mitigates the downside of our inferior binary-to-source results.

Our technique also performed well in a separate informal exercise to deter-
mine the moment of a copy-paste of class files. We noticed the developers of
httpclient.jar, an open source Java library, had posed a question on their
mailing list: when did Google Android developers copy-paste httpclient.jar
classes into android.jar?15 They wanted to know this to evaluate how hard it
would be for Google to import a more recent version of their jar. We employed
our technique to answer the original question on the mailing list, and the main
developer confirmed our result. We initially identified 4.0-beta1 as the moment of the
copy-paste. The developer asked if we could also test against 4_0_API_FREEZE,
an uncommon version he suspected Google had actually imported. We loaded the
FREEZE release into our index and re-ran our analysis. This resulted in both

15See email from Bob Lee to dev@hc.apache.org on 18 Mar 2010 23:47:14 GMT, subject “Re:
HttpClient in Android”.
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4.0-beta1 and 4_0_API_FREEZE being returned as equally likely matches for
android.jar.

We were successful in narrowing the search space for the moment of a copy-paste
to just two versions. In addition, the httpclient.jar exercise motivated future
work. Precedent and subsequent releases diverge with respect to the cardinality of
their intersecting signatures. Our anchored signature match is not just useful for
finding exact matches. It could also prove useful at measuring the distance between
versions, which in turn could be useful for performing risk assessment of releases.

As stated earlier, we performed a license audit and security audit using the
provenance information unearthed from the case study. The results of these higher
analyses proved useful: the license audit pinpointed a jar where some versions used
the GNU Affero license, while other versions used LGPL; similarly, the security
audit located a jar with a known security hole. The organization found the results
from both of these audits valuable, and steps were taken to address both issues in
their application.

8 Conclusion and Future Work

In this paper, we have discussed the problem of determining the provenance of a
software entity. That is, given a library, file, function, or even snippet of code, we
would like to be able to determine its origin: was the entity designed to fit into the
design of the system where it sits, or has it been borrowed or adapted from another
entity elsewhere? We argued that determining software entity provenance can be
both difficult and expensive, given that the candidate set may be large, there may
be multiple or even no true matches, and that the entities may have evolved in the
mean time. Consequently, we introduced the general idea of software Bertillonage:
fast, approximate techniques for narrowing a large search space down to a tractable
set of likely suspects.

As an example of software Bertillonage, we introduced anchored signature
matching, a method to determine the provenance of source code contained within
Java archives. We demonstrated the effectiveness of this simple and approximate
technique by means of an empirical experiment performed on 945 jars from the
Debian GNU/Linux distribution, and using a corpus drawn from the Maven2 Java
library repository. We found that we were able to reliably retrieve high-quality
provenance information of contained binary Java archives if the product was present
in our database derived from Maven2, and in the majority of cases we were able to
identify the correct version. If a sought product was not present in Maven, this was
usually quickly obvious. However, if a product was present we found that identifying
the correct version was sometimes tricky, requiring detailed manual examination.
The use of anchored signature matching proved to be very effective in eliminating
superficially similar non-matches, providing a small result set of candidates that could
be evaluated in detail.

Being able to determine the provenance of software entities is becoming increas-
ingly important to software developers, IT managers, and the companies they work
for. Often these stakeholders need this information in order to comply with security
standards, licensing and other requirements. Given the wide ranging nature of the
problem, the large candidate sets that must be examined, and the detailed amount of
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analysis required to verify matches, we feel that this is only the beginning of software
Bertillonage. We need to design a wide array of techniques to narrow the search
space quickly and accurately, so that we can then perform more expensive analyses
on candidate sets of tractable size.
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