
The Unreasonable Effectiveness of Traditional Information
Retrieval in Crash Report Deduplication

Joshua Charles
Campbell

Department of Computing
Science

University of Alberta
Edmonton, Canada

joshua2@ualberta.ca

Eddie Antonio Santos
Department of Computing

Science
University of Alberta
Edmonton, Canada

easantos@ualberta.ca

Abram Hindle
Department of Computing

Science
University of Alberta
Edmonton, Canada

hindle1@ualberta.ca

ABSTRACT

Organizations like Mozilla, Microsoft, and Apple are flooded
with thousands of automated crash reports per day. Al-
though crash reports contain valuable information for de-
bugging, there are often too many for developers to examine
individually. Therefore, in industry, crash reports are often
automatically grouped together in buckets. Ubuntu’s repos-
itory contains crashes from hundreds of software systems
available with Ubuntu. A variety of crash report bucket-
ing methods are evaluated using data collected by Ubuntu’s
Apport automated crash reporting system. The trade-off be-
tween precision and recall of numerous scalable crash dedu-
plication techniques is explored. A set of criteria that a
crash deduplication method must meet is presented and sev-
eral methods that meet these criteria are evaluated on a
new dataset. The evaluations presented in this paper show
that using off-the-shelf information retrieval techniques, that
were not designed to be used with crash reports, outperform
other techniques which are specifically designed for the task
of crash bucketing at realistic industrial scales. This research
indicates that automated crash bucketing still has a lot of
room for improvement, especially in terms of identifier tok-
enization.

CCS Concepts

•Information systems → Near-duplicate and plagia-
rism detection; •Software and its engineering → Soft-
ware testing and debugging; Maintaining software;

Keywords

Duplicate Bug Reports, Information Retrieval, Software En-
gineering, Free/Open Source Software, Automatic Crash Re-
porting, Contextual Information, Deduplication, Duplicate
Crash Report, Call Stack Trace

1. INTRODUCTION
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MSR’16, May 14-15 2016, Austin, TX, USA

c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4186-8/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2901739.2901766

Ada is a senior software engineer at Lovelace Inc., a large
software development company. Lovelace has just shipped
the latest version of their software to hundreds of thousands
of users. A short while later, as Ada is transitioning her team
to other projects, she gets a call from the quality-assurance
team (QA) saying that the software she just shipped has
a crashing bug affecting two-thirds of all users. Worse yet,
Ada and her team can’t replicate the crash. What would
really be helpful is if every time that crash was encountered
by a user, Lovelace would automatically receive a crash re-
port [1], with some context information about what machine
encountered the crash, and a stack trace [1] from each thread.
Developers consider stack traces to be an indispensable tool
for debugging crashed programs—a crash report with even
one stack trace will help fix the bug significantly faster than
if there were had no stack traces available at all [2].

Luckily for Ada, Lovelace Inc. has gone through the mon-
umental effort of setting up an automated crash reporting
system, much like Mozilla’s Crash Error Reports [3], Mi-
crosoft’s WER [4], or Apple’s Crash Reporter [5]. Despite
the cost associated with setting up such a system, Ada and
her team find the reports it provides are invaluable for col-
lecting telemetric crash data [6].

Unfortunately, for an organization as large as Lovelace
Inc., with so many users, even a few small bugs can result in
an unfathomable amount of crash reports. As an example, in
the first week of 2016 alone, Mozilla received 2 189 786 crash
reports, or about 217 crashes every minute on average.1 How
many of crash reports are actually relevant to the bug Ada
is trying to fix?

The sheer amount of crash reports present in Lovelace’s
crash reporting system is simply too much for one developer,
or even a team of developers, to deal with by hand. Even if
Ada spent only one second evaluating a single crash report,
she would still only be able to address 1/3 of Lovelace’s
crash reports received during one day of work. Obviously,
an automated system is needed to associate related crash
reports together, relevant to this one bug, neatly in one place.
All Ada would have to do is to select a few stack traces
from this crash bucket [4], and get on with debugging her

1https://crash-stats.mozilla.com/api/SuperSearch/?date=
>\%3d2016-01-01&date=<\%3d2016-01-08 The total
number of crashes will slowly increase over time and then
eventually drop to zero due to Mozilla’s data collection and
retention policies.

application. Since this hypothetical bucket has all crash
stack traces caused by the same bug, Ada could analyze any
number of stack traces and pinpoint exactly where the fault
is and how to fix it.

The questions that this paper seeks to answer are:
RQ1: What are effective, industrial-scale methods of
crash report bucketing?
RQ2: How can these methods be tuned to increase preci-
sion or recall?

This paper will evaluate existing techniques relevant to
crash report bucketing, and propose a new technique that
attempts to handle this fire hose of crash reports with indus-
trially relevant upper bounds (O (log n) per report, where
n is number of crash reports). In order to validate new
techniques some of the many techniques described in the
literature are evaluated and compared in this paper. The
results of the evaluation shows that techniques based on the
standard information retrieval statistic, term frequency × in-
verse document frequency (tf–idf), do better than others, de-
spite the fact these techniques discard information about
what is on the top of the stack and the order of the frames
on the stack.

1.1 Contributions
This paper presents PartyCrasher, a technique that

buckets crash reports. It extends the work done by Lerch
and Mezini [14] to the field of crash report deduplication and
show that despite its simplicity, it is quite effective. This pa-
per contributes:

1. a criterion for industrial-scale crash report deduplica-
tion techniques;

2. replication of some existing methods of deduplication
(such as Wang et al. [13] and Lerch and Mezini [14])
and evaluations of these methods on open source crash
reports, providing evidence of how well each technique
performs at crash report bucketing;

3. implementation of these methods in an open source
crash bucketing framework;

4. evaluation based on the automated crashes collected
by the Ubuntu project’s Apport tool, the only such
evaluation at the time of writing;

5. a bug report deduplication method that outperforms
other methods when contextual information is included
along with the stack trace.

1.2 What makes a crash bucketing technique
useful for industrial scale crash reports?

The volume, velocity, variety, and veracity (uncertainty)
of crash reports makes crash report bucketing a big-data
problem. Any solution needs to address concerns of big-data
systems especially if it is to provide developers and stake-
holders with value [19]. Algorithms that run in O

(

n
2
)

are
unfeasible for the increasingly large amount of crash reports
that need to be bucketed. Therefore, an absolute upper-
bound of O (n log n) is chosen for evaluated algorithms.

The methods evaluated in this paper were methods found
in the literature, or methods that the authors felt possibly
had promise. Methods that were evaluated in this paper
were restricted to those that met the following criteria. The
criteria were chosen to match the industrial scenario as de-
scribed in the introduction.

1. Each method must scale to industrial-scale crash re-
port deduplication requirements. Therefore, it must
run in O (n log n) total time. Equivalently, each new,
incoming crash must be able to be assigned a bucket
in O (log n) time or better.

2. No method may delay the bucketing of an incoming
crash report significantly, so that up-to-date near-real-
time crash reports, summaries, and statistics are avail-
able to developers at all times. This requires the method
to be online.

3. No method may require developer intervention once it
is in operation, or require developers to manually cate-
gorize crashes into buckets. This requires the method
to be unsupervised.

4. No method may require knowledge of the eventual to-
tal number of buckets or any of their properties be-
forehand. Each method must be able to increase the
number of buckets only when crashes associated with
new faults arrive due to changes in the software sys-
tem for which crash reports are being collected. This
requires the method to be non-stationary.

Several deduplication methods are evaluated in this paper.
They can be categorized into two major categories. First,
several methods based on selecting pre-defined parts of a
stack to generate a signature were evaluated. The simplest
of these methods is the 1Frame method, that selects the
name of the function on top of the stack as a signature. All
crashes that have identical signatures are then assigned to a
single bucket, identified by the signature used to create it.

Similarly, signature methods 2Frame and 3Frame concate-
nate the names of the two or three functions on top of the
stack to produce a signature. 1Addr selects the address of
the function on top of the stack to generate a signature
rather than the function name. 1File selects the name of
the source file in which the function on top of the stack is
defined to generate a signature, and 1Mod selects either the
name of the file or the name of the library, depending on
which is available. Figure 1 shows an example stack trace
and how the various signatures are extracted from it using
these methods. All of the signature-based methods, as imple-
mented, run in O (n log n) total time or O (log n) amortized
time.

The second category of methods are those based on tf–idf [22]
and inverted indices, as implemented by the off-the-shelf
information-retrieval software ElasticSearch 1.6 [23]. tf–idf
is a way to normalize a token based on both on its occurrence
in a particular document (in our case, crash reports), and
inversely proportional to its appearance in all documents.
That means that common tokens that appear frequently in
nearly all crash reports have little discriminative power com-
pared to tokens that appear quite frequently in a small set
of crash reports.

1.3 Background
Of course, the idea of crash bucketing is not new; Mozilla’s

system performs bucketing [7, 6], as does WER [4]. Many
approaches make the assumption that two crash reports are
similar if their stack traces are similar. Consequently, re-
searchers [8, 9, 10, 11, 4, 7, 12, 13, 14, 15] have proposed
various methods of finding similar stack traces, crash report

#1 0x00002b344498a150 in CairoOutputDev::setDefaultCTM () from /usr/lib/libpoppler-glib.so.1
#2 0x00002b344ae2cefc in TextSelectionPainter::TextSelectionPainter () from /usr/lib/libpoppler.so.1
#3 0x00002b344ae2cff0 in TextPage::drawSelection () from /usr/lib/libpoppler.so.1
#4 0x00002b344498684a in poppler_page_render_selection () from /usr/lib/libpoppler-glib.so.1

Method Signature
1Frame CairoOutputDevsetDefaultCTM
2Frame CairoOutputDev::setDefaultCTM TextSelectionPainter::TextSelectionPainter
3Frame CairoOutputDev::setDefaultCTM TextSelectionPainter::TextSelectionPainter TextPage::drawSelection
1Addr 0x00002b344498a150
1File No Signature (no source file name given in the stack)
1Mod /usr/lib/libpoppler-glib.so.1

Method Tokenization
Lerch 0x00002b344498a150 cairooutputdev setdefaultctm from libpoppler glib

Space #1 0x00002b344498a150 in CairoOutputDev::setDefaultCTM () from /usr/lib/libpoppler-glib.so.1

Camel 1 0 x 00002 b 344498 a 150 in Cairo Output Dev set Default CTM from usr lib libpoppler glib so 1

Figure 1: An example stack trace (top), its various signatures (middle), and various tokenizations of the top
line of the trace (bottom).

similarity, crash report deduplication, and crash report buck-
eting. In order to motivate the evaluation and design choices
it is necessary to look at what already has been proposed.

Empirical evidence suggests that a function responsible
for crash is often at or near the top of the crash stack
trace [8, 2, 15]. As such, many bucketing heuristics em-
ploy higher weighting for grouping functions near the top of
the stack [10, 4, 13]. Many of these methods are similar to
or extensions of the 1Frame method, that assumes that the
function name on the top of the stack is the most (or only)
important piece of information for crash bucketing. How-
ever, at least one study refutes the effectiveness of truncat-
ing the stack trace [14]. The most influential discriminative
factors seem to be function name [14] and module name [11,
4].

Lerch and Mezini [14] did not directly address crash report
bucketing; they addressed bug report deduplication through
stack trace similarity. They deduplicated bug reports that
included stack traces by comparing the traces with tf–idf,
which is usually applied to natural language text. Although
crash bucketing was implicit in this approach to bug-report-
deduplication, the authors did not compare this technique
against the other crash report deduplication techniques. Un-
like the signature-based methods, tf–idf-based methods do
not consider the order that frames appear on the stack. A
function at the top of the stack is treated identically to a
function at the bottom of the stack.

This paper applies and evaluates Lerch and Mezini [14]’s
method of bug report deduplication to crash report dedu-
plication, both excluding contextual data from the crash re-
port as suggested by Lerch and Mezini [14] and including
it. These methods are listed in the evaluation section as the
Lerch method and the LerchC method, respectively. The
automated crash reporting tools collected contextual data
at the same time as the crash stack trace. This paper also
evaluates variants of the Lerch and LerchC methods. Space,
SpaceC, Camel, and CamelC were created for this evaluation
based on tokenization techniques described by [23] and by
including or excluding contextual information available in
the crash reports. The variants replace the tokenization
pattern used in Lerch and LerchC with a different tokeniza-
tion pattern. The name specifies the kind of tokenization–
Space splits on whitespace only; Camel splits intelligently
on CamelCasedComponents. If the name is followed by a C,
the evaluation included the entire context of the stack trace

along with the stack trace itself. Figure 1 shows how each
method tokenizes a sample stack frame.

Modani et al. [10] provide two techniques to improve per-
formance of the various other algorithms. These techniques
are inverted indexing and top-k indexing, both of which are
evaluated in this paper. Inverted indexing is employed to
improve the performance of all of the tf–idf-based methods
including Lerch and LerchC (however Modani et al. did
not use tf–idf in their evaluation). The implementation is
provided by ElasticSearch 1.6 [23]’s indexing system. Top-
k indexing is employed to evaluate all of the methods that
use the top portions of stacks, including 1Frame, 2Frame,
3Frame, 1File, etc.

1.4 Methods Not Appearing In This Report
Mozilla’s deduplication technique, at the time of writing,

as it is implemented in Socorro [24] requires a large num-
ber of hand-written regular expressions to select, ignore,
skip, or summarize various parts of the crash report. These
must be maintained over time by Mozilla developers and
volunteers in order to stay relevant to crashes as versions
of Firefox are released. This technique typically uses one
to three of the frames of the stack and likely has similar
performance to 1Frame, 2Frame, and 3Frame. Furthermore,
the techniques employed by Mozilla are extremely specific
to their major product, Firefox, while the evaluation dataset
contains crashes from 616 other systems.

In 2005, Brodie et al. [8] presented an approach that nor-
malizes the call stack to remove non-discriminative functions
as well as flattening recursive functions, and compares stacks
using weighted edit distance. Since pairwise stack matching
would be infeasible on large data sets–having a minimum
worst case run-time of O

(

n
2
)

–they index a hash of the top
k function names at the top of the stack and use a B+Tree
look-up data structure. Several approaches since have used
some stack similarity metric, and found that the most dis-
criminative power is in the top-most stack frames—i.e., the
functions that are closer to the crash point.

Liu and Han[9] grouped crashes together if they suggest
the same fault location. The fault locations were found using
a statistical debugging tool called SOBER [16], that, trained
on failing and passing execution traces (based on instrument-
ing Boolean predicates in code [17]), returns a ranked list of
possible fault locations. Methods involving full instrumen-
tation [9] or static call graph analysis [15] are also deemed

unfeasible, as they are not easy to incorporate into already
existing software, and often incur pairwise comparisons to
bucket regardless of instrumentation cost. Methods that al-
ready assume buckets such as Kim et al. [18] and Wu et
al. [15] are disregarded as well.

Modani et al. [10] propose several algorithms. The first

algorithm employs edit distance, requiring O
(

n
2
)

total time.
The second and third algorithms are similar, employing longest
common subsequences and longest common prefixes, respec-
tively. The longest common subsequence problem is, in gen-
eral, NP-hard in the number of sequences (corresponding
to crashes for the purposes of this evaluation). The longest
common prefix algorithm can be implemented sufficiently
efficiently for the purposes of this evaluation, but was not
evaluated here because it must produce at least as many
buckets as the 1Frame algorithm, that already creates too
many buckets. Thus no Modani et al. [10] comparison algo-
rithms were used.

Bartz et al. [11] also used edit distance on the stack trace,
but a weighted variant with weights learned from training
data. Consequently, they were able to consider other data
in the crash report aside from the stack trace. The weights
learned suggested some interesting findings: substituting a
module in a call stack resulted in a much higher distance;
as well, the call stack edit distance was found to be the
highest-weighted factor, despite the consideration of other
crash report data, confirming the intuition in the literature
of the stack trace’s importance.

The methods based on edit distance—viz., Brodie et al. [8],
Modani et al. [10], Bartz et al. [11]—are disqualified due
to their requirement of pairwise comparisons between stack
traces, with an upper-bound of O

(

n
2
)

.

Schröter et al. [2] empirically studied developers’ use of
stack traces in debugging and found that bugs are more
likely to be fixed in the top 10 frames of their respective
crash stack trace, further confirming the surprising signifi-
cance of the top-k stack frames in crash report bucketing,
which is also corroborated more recently by Wu et al. [15].

The method described in Dhaliwal et al. [7] is not in-
cluded in the evaluation because it first subdivides buckets
produced by the 1Frame deduplication method, and requires
O

(

|B| 2
)

total time to run, where |B| is the number of buck-
ets. Its use of the 1Frame method already produces a factor
of 1.67 times too many buckets. Despite the optimization in
Dhaliwal et al. [7] that attempts to avoid O

(

n
2
)

behaviour,

it has O
(

|B| 2
)

behaviour. Since the number of buckets in-
creases over time, though at a slower rate, this method will
eventually become computationally unfeasible if old data is
not discarded.

Dang et al. [12] created a model that places more weight
on stack frames closer to the top of the stack, and favours
stacks whose matched functions are similarly spaced from
each other. This technique suffers from a proposed O(n3)
clustering algorithm.

Wang et al. [13] created three “rules” for finding corre-
lations between crash stack traces: rule 1 correlates the
method signature found in one stack trace to be contained
in the other; rule 2 correlates stack traces if the source file
name on the top frame of the stacks are the same; rule 3
finds closed ordered subsets of file names that are found in
the stack traces. It weighs these subsets by the relative fre-
quency of finding this ordered subset in a bucket. The only
method from Wang et al. [13] directly evaluated in this pa-

Figure 2: PartyCrasher within a development con-
text

per is the method of comparing file names at the top of the
stack, as 1Frame.

Thus, there are many approaches for bucketing crash re-
ports and crash report similarity, but some are less realistic
or industrially applicable than others. Any new work in
the field must attempt to compare itself against some of the
prior techniques such as Lerch and Mezini [14].

2. METHODOLOGY
First, the requirements for an industrial-scale automated

crash deduplication system were characterized by looking at
systems that are currently in use. Then, a variety of meth-
ods from the existing literature were evaluated for applica-
bility to the task of automated crash report deduplication.
Several methods that met the requirements were selected. A
general purpose Python framework in which any of the se-
lected deduplication methods could be supported and eval-
uated was developed, and then used to evaluate all of the
methods by simulating the process of automated crash re-
ports arriving over time. Additionally, a dataset that could
be used as a gold set to judge the performance of such meth-
ods was obtained. The dataset was then filtered to include
only crash reports that had been deduplicated by human
developers and volunteers.

Various approaches of automatic crash report categoriza-
tion (the exact problem that Ada is tasked with solving) is
simulated. First, a crash report arrives with no information
other than what was gathered by the automated reporting
mechanisms on the user’s machine. This report might in-
clude a description written by the user of what they were

Binary package hint: evolution-exchange

I just start Evolution, wait about 2 minutes, and then evolution-exchange crashed

ProblemType: Crash

Architecture: i386

CrashCounter: 1

Date: Tue Jul 17 10:09:50 2007

DistroRelease: Ubuntu 7.10

ExecutablePath: /usr/lib/evolution/2.12/evolution-exchange-storage

NonfreeKernelModules: vmnet vmmon

Package: evolution-exchange 2.11.5-0ubuntu1

PackageArchitecture: i386

ProcCmdline: /usr/lib/evolution/2.12/evolution-exchange-storage --oaf-activate-i

ProcCwd: /

ProcEnviron:

PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games

LANG=en_US.UTF-8

SHELL=/bin/bash

Signal: 11

SourcePackage: evolution-exchange

Title: evolution-exchange-storage crashed with SIGSEGV in soup_connection_discon

Uname: Linux encahl 2.6.20-15-generic #2 SMP Sun Apr 15 07:36:31 UTC 2007 i686 G

UserGroups: adm admin audio cdrom dialout dip floppy kqemu lpadmin netdev plugde

#0 0xb71e8d92 in soup_connection_disconnect () from /usr/lib/libsoup-2.2.so.8

#1 0xb71e8dfd in ?? () from /usr/lib/libsoup-2.2.so.8

#2 0x080e5a48 in ?? ()

#3 0xb6eaf678 in ?? () from /usr/lib/libgobject-2.0.so.0

#4 0xbfd613e8 in ?? ()

#5 0xb6e8b179 in g_cclosure_marshal_VOID__VOID ()

from /usr/lib/libgobject-2.0.so.0

Backtrace stopped: frame did not save the PC

Figure 3: An example crash report, including stack.

doing when the crash occurred. Figure 3 is an example of
one of the crash reports used in the evaluation with a user-
submitted description on the second line, metadata in the
middle, and a stack trace on the bottom.

2.1 Mining Crash Reports
The first step in the evaluation procedure is mining of

crash reports from Ubuntu’s bug repository, Launchpad [20].
This was done using a modified version of Bicho [21], a soft-
ware repository mining tool.2 Over the course of one month,
Bicho was able to retrieve 126 609 issues from Launchpad,
including 80 478 stack traces in 44 465 issues. Some issues
contain more than one stack trace. For issues that contained
more than one stack trace, the first stack trace posted to that
issue was selected, yielding 44 465 issues with crash reports
and stack traces. The first stack trace is selected because
it is the one that arrives with the automated crash report,
generated by the instrumentation on the user’s machine.

Ubuntu crash reports were used for the evaluation because
they are automatically generated and submitted but many
of them have been manually deduplicated by Ubuntu devel-
opers and volunteers. Other data sources, such as Mozilla’s
Crash Reports have already been deduplicated by Mozilla’s
own automated system, not by humans.

Next, the issues were put into groups based on whether
they were marked as duplicates of another issue, resulting
in 30 664 groups of issues. These groups are referred to as
“issue buckets” for the remainder of the paper, to prevent
confounding with groups of crash reports, that will be re-
ferred to as “crash buckets.” This dataset is available!3

2.1.1 Stack Trace Extraction

Each issue and stack trace obtained from Ubuntu is for-
matted as plain text, as shown in Figure 3. They were then
parsed into JSON-formatted data with individual fields for
each item, such as address, function name, and which library
the function came from. Unfortunately, this formatting is

2https://github.com/orezpraw/Bicho/
3https://archive.org/details/bugkets-2016-01-30

not always consistent and may be unusable. For example,
some stack traces contain unintelligible binary data in place
of the function name. This could be caused by memory
corruption when the stack trace was captured. 2 216 crash
reports and stack traces were thrown out because their for-
matting could not be parsed, leaving 41 708 crash reports
with stack traces.

2.1.2 Crash Report and Stack Trace Data

Issues were then filtered to only those that had been dedu-
plicated by Ubuntu developers and other volunteers, yield-
ing 15 293 issues with 15 293 stack traces in 3 824 issue buck-
ets. These crash reports were submitted to Launchpad by
the Apport tool.4 They were collected over a one month
period. Because Launchpad places restrictions on how often
the Launchpad API can be used to request data, and each
crash report required multiple requests, it required over 20
seconds to download each issue. The crash reports used
in the evaluation span 617 different source packages, each of
which represents a software system. The only commonalities
between them are that they are all written in C, C++, or
other languages that compile to binaries debuggable by a C
debugger, and that they are installed and used on Ubuntu.
The most frequently reported software system is Gnome5,
which has 2 154 crash reports with stack traces. This dataset
is large, comprehensive and covers a wide variety of projects.

2.2 Crash Bucket Brigade
In order to simulate the timely nature of the data, each

report is added to a simulated crash report repository one at
a time. This is done so that no method can access data “from
the future” to choose a bucket to assign a crash report to. It
is first assigned a bucket based on the crashes and buckets
already in the simulated repository, then it is added to the
repository as a member of that bucket.

2.3 Deciding when a Crash is not Like the Oth-
ers

For methods based on Lerch and Mezini, there is a thresh-
old value, T , that determines how often, and when, an in-
coming crash report is assigned to a new bucket. A specific
value for T was not described by Lerch and Mezini, so a
range of different values from 1.0 to 10.0 were evaluated.
Higher values of T will cause the algorithm to create new
buckets more often.

The threshold value applies to the score produced by the
Lucene search engine inside ElasticSearch 1.6 [23]. Details
of this tf–idf based scoring method are described within
the ElasticSearch documentation.6 The scoring algorithm
is based on tf–idf, but contains a few minor adjustments in-
tended to make scores returned from different queries more
comparable.

2.4 Implementation
The complete implementation of the evaluation presented

in this paper is available in the open-source software Party-

Crasher.7 The implementation includes every deduplica-
tion method we claimed to evaluate above, a general-purpose

4https://launchpad.net/apport
5https://www.gnome.org/
6https://www.elastic.co/guide/en/elasticsearch/guide/1.x/
practical-scoring-function.html
7https://github.com/naturalness/partycrasher

deduplication framework, the programs used to mine and
filter the data used for the evaluation, the programs that
produced the evaluation results, the raw evaluation results,
and the scripts used to plot them.

2.5 Evaluation Metrics
Two families of evaluation metrics were used. These are

the BCubed precision, recall, and F1-score, and the purity,
inverse purity, and F1-score. Both are suitable for charac-
terizing the performance of online non-stationary clustering
algorithms by comparing the clusters that evolve over time
to clusters created by hand. A comparison of BCubed and
purity, along with several other metrics, and an argument
for the advantages of BCubed over purity is provided in
Amigó et al. [25]. The mathematical formulae for both
metrics can be found in Amigó et al. [25]. However, purity
also has an advantage over BCubed: specifically that it does
not require O

(

n
2
)

total time to compute whereas BCubed
does.

If a method has a high BCubed precision, this means that
there would be less chance of a developer finding unrelated
crashes in the same bucket. This is important to prevent
crashes caused by two unrelated bugs from sharing a bucket,
possibly causing one bug to go unnoticed since usually a
developer would not examine all of the crashes in a single
bucket.

If a method has a high BCubed recall, this means that
there would be less chance of all the crashes caused by a
single bug to become separated into multiple buckets. Re-
ducing the scattering of a single bug across multiple buckets
is important as scattering interferes with statistics about
frequently experienced bugs.

In contrast, purity and inverse purity focus on finding the
bucket in the experimental results that most closely matches
the bucket in the gold set. Then the overlap between the two
closest matching buckets is used to compute the purity and
inverse purity metrics, with high purity indicating that most
of the items in a bucket produced by one of the methods
evaluated are also in the matching bucket in the gold set.
High recall indicates that most of the items in a bucket from
the gold set are found in the matching bucket produced by
the method being evaluated.

The purity method does not, however, completely reflect
the goals of the evaluation. Purity and inverse purity do
not capture anything besides the overlap between the two
buckets that overlap the most. So, if a method creates a
bucket that is 51% composed of crashes from a single bug,
the other 49% doesn’t matter. That 49% could come from
a different bug, or 200 different bugs, but the purity would
be the same value. It is included in this evaluation for com-
pleteness, since it was used by Dang et al. [12].

Both metrics can be combined into F-scores. In this evalu-
ation, F1-scores were used, placing equal weight on precision
and recall (or purity and inverse purity.)

BCubed and purity can be used with the gold set, hand-
made buckets that are available from Ubuntu’s Launchpad [20]
bug tracking system. Ubuntu developers and volunteers
have manually marked many of the bugs in their bug tracker
as duplicates. Furthermore, many of the bugs in the bug
tracker are automatically filed by Ubuntu’s automated crash
reporting system, Apport. This evaluation uses only bugs
that were both automatically filed by Apport and manually
marked as duplicates of at least one other bug. The dataset

is biased to the distribution of crashes that are bucketed,
which might be different than crashes that are not. Con-
versely, this prevents the evaluation dataset from contain-
ing any crashes that have not yet evaluated by an Ubuntu
developer or volunteer.

3. RESULTS
After extracting crash reports from Launchpad, and im-

plementing various crash report bucketing algorithms, the
performance of these algorithms on the Launchpad gold set
was evaluated. Evaluation is multifaceted as in most in-
formation retrieval studies since the importance of either
precision or recall are tuneable.

3.1 BCubed and Purity
Evaluation of the performance of bucketing algorithms is

performed with BCubed and purity metrics. Figure 4 shows
the performance of a variety of deduplication methods eval-
uated against the entire gold set of deduplicated crash re-
ports. The 1File and 1Addr methods have the most pre-
cision, while LerchC has the most recall. F1-score is dom-
inated by CamelC and Lerch. As in the results of Lerch
and Mezini [14], using only the stacks outperforms using the
stack plus its metadata and contextual information in terms
of F1-score. For the CamelC, Lerch, and LerchC simulations,
a threshold of T = 4.0 was used.

Amigó et al. [25] observed differences in BCubed and pu-
rity metrics. Their observation was tested empirically by
the evaluation. In Figure 4, BCubed and purity showed
similar results. The best and worst methods in terms of
BCubed precision are the same as the best and worst meth-
ods in terms of purity; the same holds true for BCubed
recall and inverse purity, and BCubed F1-score and purity
F1-score. However, some of the methods with intermedi-
ate performance are much closer together in purity F1-score
than they are in BCubed F1-score.

Figure 4 also shows that in general, if a method has a
higher precision or purity, it also has a lower recall and in-
verse purity. For example, 3Frame has a higher precision
than 2Frame, having a higher precision than 1Frame, but
1Frame has a higher recall than 2Frame and 3Frame.

The CamelC crash bucketing method employs: tf–idf; a to-
kenizer that attempts to break up identifiers such as variable
names into their component words; and the entire context
of the crash report including all fields reported in addition
to the stack. It outperforms other bucketing methods eval-
uated.

3.2 Bucketing Effectiveness
Figure 5 shows the number of buckets created by a vari-

ety of deduplication methods. The number of issue buckets
extracted from the Ubuntu Launchpad gold set is plotted as
the line labelled Ubuntu. The method that created a num-
ber of buckets most similar to the number mined from the
Ubuntu Launchpad gold set was LerchC. For the Lerch and
LerchC simulations, a threshold of T = 4.0 was used.

Figure 6 shows the performance of the Lerch method
when used with a variety of different new-bucket thresholds,
T . Figure 7 shows the number of buckets created by the
same method with those same thresholds. Since Lerch and
Mezini [14] did not specify what threshold they used, this
evaluation explored a range of thresholds. It can be seen
from the plots that the relative performance of T thresholds,

Figure 4: BCubed (top) and Purity-metric (bottom) scores for various methods of crash report deduplication.

Figure 5: Number of buckets created as a function
of number of crashes seen. The line labelled Ubuntu

indicates the number of groups crashes that were
marked as duplicates of each other by Ubuntu de-
velopers or volunteers.

in terms of BCubed precision, BCubed recall, and BCubed
F1-score, becomes apparent after only 5 000 crash reports.
In practice, the authors of this paper suggest that develop-
ers using this system start with a middle F1-score of around
T = 4.0 and adjust it as they use the system, rather than
systematically examining thousands of crash reports.

It is possible for developers using this system to create
multiple sets of buckets with different thresholds. This can
be done efficiently as the crash reports are recieved, and
would allow developers to choose a threshold at any time
without re-bucketing. The implementation only requires a
single query and can produce multiple buckets for each in-
coming crash report, since the threshold is applied after re-
sults from ElasticSearch are retrieved.

For all the results that do not specify a value for T , T =
4.0 was used. The highest F1-score was observed at T = 4.0
after only processing 5 000 bugs with a variety of different
thresholds. For Lerch, a threshold of 3.5 < T < 4.5 had the
highest performance.

As shown in figure 8, T = 4.0 still has the highest F1-
score after every crash was processed. Furthermore, other
values of T near 4.0 have the same F1-score, including the
range 3.5 ≤ T ≤ 4.5. Figure 8 also shows how the threshold
can be tuned to create a trade-off between precision and
recall. Setting a threshold of 0.0 is similar to instructing the
system to put all of the crashes into a single bucket. This
would be the correct choice if developers were satisfied with
the explanation that all of those crashes were created by a
single bug. In that case the bug would likely be filed as an
issue titled, “Programs on Ubuntu Crash.” The fact that
setting the threshold to 0.0 does not result in recall quite at
1.0 is an artifact of optimizations employed in ElasticSearch,
specifically ElasticSearch’s inverted index.

Conversely, setting the threshold to 10.0 results in every
crash being assigned to its own bucket, and therefore a per-
fect precision of 1.0. This would be the correct choice if
developers considered every individual crash to be a dis-
tinct bug because the exact state of the computer was at
least somewhat different during each crash. It might be

more desirable to tune the value of T by using direct de-
veloper feedback rather than the technique employed here,
comparing against an existing dataset. Instead of using data,
one could ask developers if they had seen too many crashes
caused by unrelated bugs in a single bucket recently. If they
had, then T should be increased. Or, T should be decreased
if developers see multiple buckets that seemed to be focused
on crashes caused by the same bug.

3.3 Tokenization
Threshold is not the only way that a trade-off between

precision and recall can be made. A variety of methods
were tested that use the ElasticSearch/Lucene tf–idf-based
search from Lerch and Mezini [14], but do not follow their
tokenization strategy. The performance of several tokeniza-
tion strategies is shown in Figure 9. As in other cases, the
methods with high precision had low recall, and the meth-
ods with high recall had low precision. All methods shown
in Figure 9 used a threshold of T = 4.0.

The Space method is obtained by replacing the tokeniza-
tion strategy in Lerch with one that splits words on whites-
pace only, such that it does not discard any tokens regard-
less of how short they are, and does not lowercase every
letter in the input. The Space method performs worse than
Lerch. However, when both stack traces and context are
used, the SpaceC method, performance improves slightly.
This is the opposite behaviour of Lerch. Adding context
(LerchC) causes performance to decrease slightly. A third
tokenization strategy, Camel was evaluated. Camel attempts
to break words that are written in CamelCase into their com-
ponent words, using a method provided in the ElasticSearch
documentation.8 This strategy had the worst performance
of the three, until it was used with context included, called
CamelC. The addition of context allowed CamelC to outper-
form every other method evaluated in this paper.

The worst-performing tokenization evaluated, 1Addr, was
also the method that produced the largest number of buck-
ets. However, tuning methods to match the number of
buckets in the gold set without concern for performance did
not result in higher performance. Lerch with T = 3.0 and
SpaceC with T = 4.0 were not the best-performing threshold
or method, but both produced almost the same number of
buckets as the gold set.

3.4 Runtime Performance
The current implementation of PartyCrasher requires

only 45 minutes to bucket and ingest 15 293 crashes, using
the slowest algorithm, CamelC, on a Intel(R) Core(TM) i7-
3770K CPU @ 3.50GHz machine with 32GiB of RAM and
a Hitachi HDS723020BLE640 7200 RPM hard drive. Per-
formance depends mainly on disk throughput, latency and
RAM available for caching; ElasticSearch recommends using
only solid-state drives. This works out to 335 crashes per
minute, meeting the performance goal of 217 crashes per
minute based on crash-stats from Mozilla.

4. DISCUSSION

4.1 Threats to Validity
Results are dependent on the gold set—a manual classi-

fication of crash report by Ubuntu volunteers. The results
8https://github.com/elastic/elasticsearch/blob/1.6/docs/
reference/analysis/analyzers/pattern-analyzer.asciidoc

Figure 6: BCubed scores for the Lerch method of crash report deduplication at various new-bucket thresholds
T .

Figure 7: Number of buckets created as a function
of number of crashes seen for the Lerch method
of crash report deduplication at various new-bucket
thresholds T . The line labelled Ubuntu indicates the
number of groups crashes that were marked as du-
plicates of each other by Ubuntu developers or vol-
unteers.

Figure 8: Precision/Recall plot showing the trade-
off between BCubed precision and recall as the new-
bucket threshold T is adjusted. BCubed F1-score is
also listed in the plot.

Figure 9: BCubed scores for the Lerch method of crash report deduplication with Lerch’s tokenization
technique replaced by a variety of other techniques.

may be biased due to the exclusive use of known duplicate
crashes; the known and classified duplicates may not be rep-
resentative of all crash reports. If any of these methods
with with tunable parameters are deployed, the parameters
should be tuned based on feedback from people working with
the crash buckets, not just the gold set.

Since the evaluation only used data from open source soft-
ware, it is unknown if our results are applicable to closed-
source domains. Only stacks that originate from C and C++
projects have been evaluated; it is possible that other lan-
guages, compilers, and their runtimes have different char-
acteristics in how they form stack traces. However, these
results are corroborated by studies that examined Java ex-
clusively [13, 14].

4.2 Future Work
The results presented indicate that improvements could

be made to tf–idf-based-crash deduplication methods. For
instance, a technique based on tf–idf that also incorporates
information about the order of frames on the stack would
likely outperform many of the presented methods.

The tokenization techniques evaluated in this paper are
extremely primitive. They are merely regular expressions
that break up words based on certain types of characters
such as spaces, symbols, uppercase letters, lowercase letters
and numbers. Advanced tokenization techniques, such as
the ones found in Guerrouj et al. [27] and Hill et al. [28],
would likely outperform the basic techniques that have been
evaluated in this paper.

It would be valuable to measure the effectiveness of using
the buckets produced by the CamelC technique as input to
other methods, such as those that perform bug triaging [26]
and crash localization [15].

5. CONCLUSION

The results in this paper indicate that off-the-shelf tf–idf-
based information retrieval tools can bucket crash reports
in a completely unsupervised, large-scale setting when com-
pared to a variety of other previously proposed algorithms.
Based on these results, a developer, such as Ada, should
choose a tf–idf-based crash deduplication method with to-
kenization that fits their dataset, and intermediate new-
bucket threshold. They should update this threshold based
on feedback from developers, volunteers, or employees that
work with the stack traces directly. A tf–idf approach that
used the entire crash report and stack trace, tokenized using
camel-case had the best F1-score on the Ubuntu Launchpad
crash reports used in this work. In addition, there is a lot
of room for improvements to these techniques. This con-
clusion is surprising in light of the fact that the tf–idf-based
techniques evaluated disregard information that is often con-
sidered to be essential to stack traces, such as the order of
the frames in the stack.

Finally the research questions can be answered:

RQ1: tf–idf-based methods are effective, industrial-scale
methods of crash report bucketing.
RQ2: New-bucket thresholds and tokenization strategies
can be tuned to increase precision and recall.

Acknowledgements

The authors would like to thank the Mozilla foundation, es-
pecially Robert Helmer, Adrian Gaudebert, Peter Bengtsson
and Chris Lonnen for their help, and for making Mozilla’s
massive collection of stack reports open and publicly avail-
able. Additionally, the authors would like to thank the
Ubuntu project and all of its developers who manually dedu-
plicated bug reports that were submitted with crash reports.
Funding for this research was provided by MITACS Acceler-
ate with BioWareTM, an Electronic Arts Inc. studio.

6. REFERENCES
[1] H. Seo and S. Kim, “Predicting Recurring Crash

Stacks,” in Proceedings of the 27th IEEE/ACM
International Conference on Automated Software
Engineering, ser. ASE 2012. ACM, pp. 180–189.
[Online]. Available:
http://doi.acm.org/10.1145/2351676.2351702

[2] A. Schröter, N. Bettenburg, and R. Premraj, “Do
stack traces help developers fix bugs?” in 2010 7th
IEEE Working Conference on Mining Software
Repositories (MSR), pp. 118–121.

[3] Mozilla Corporation. Mozilla Crash Reports. [Online].
Available: http://crash-stats.mozilla.com

[4] K. Glerum, K. Kinshumann, S. Greenberg, G. Aul,
V. Orgovan, G. Nichols, D. Grant, G. Loihle, and
G. Hunt, “Debugging in the (Very) Large: Ten Years
of Implementation and Experience,” in Proceedings of
the ACM SIGOPS 22Nd Symposium on Operating
Systems Principles, ser. SOSP ’09. ACM, pp.
103–116. [Online]. Available:
http://doi.acm.org/10.1145/1629575.1629586

[5] Technical Note TN2123: CrashReporter. [Online].
Available: https://developer.apple.com/library/mac/
technotes/tn2004/tn2123.html

[6] I. Ahmed, N. Mohan, and C. Jensen, “The Impact of
Automatic Crash Reports on Bug Triaging and
Development in Mozilla,” in Proceedings of The
International Symposium on Open Collaboration, ser.
OpenSym ’14. ACM, pp. 1:1–1:8. [Online]. Available:
http://doi.acm.org/10.1145/2641580.2641585

[7] T. Dhaliwal, F. Khomh, and Y. Zou, “Classifying field
crash reports for fixing bugs: A case study of Mozilla
Firefox,” in 2011 27th IEEE International Conference
on Software Maintenance (ICSM), pp. 333–342.

[8] M. Brodie, S. Ma, G. Lohman, L. Mignet, M. Wilding,
J. Champlin, and P. Sohn, “Quickly Finding Known
Software Problems via Automated Symptom
Matching,” in Second International Conference on
Autonomic Computing, 2005. ICAC 2005. Proceedings,
pp. 101–110.

[9] C. Liu and J. Han, “Failure Proximity: A Fault
Localization-based Approach,” in Proceedings of the
14th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, ser. SIGSOFT
’06/FSE-14. ACM, pp. 46–56. [Online]. Available:
http://doi.acm.org/10.1145/1181775.1181782

[10] N. Modani, R. Gupta, G. Lohman,
T. Syeda-Mahmood, and L. Mignet, “Automatically
Identifying Known Software Problems,” in 2007 IEEE
23rd International Conference on Data Engineering
Workshop, pp. 433–441.

[11] K. Bartz, J. W. Stokes, J. C. Platt, R. Kivett,
D. Grant, S. Calinoiu, and G. Loihle, “Finding Similar
Failures Using Callstack Similarity.” in SysML.
[Online]. Available: https://www.usenix.org/event/
sysml08/tech/full_papers/bartz/bartz_html/

[12] Y. Dang, R. Wu, H. Zhang, D. Zhang, and P. Nobel,
“ReBucket: a method for clustering duplicate crash
reports based on call stack similarity,” in Proceedings
of the 34th International Conference on Software
Engineering. IEEE Press, pp. 1084–1093. [Online].
Available: http://dl.acm.org/citation.cfm?id=2337364

[13] S. Wang, F. Khomh, and Y. Zou, “Improving bug
localization using correlations in crash reports,” in
2013 10th IEEE Working Conference on Mining
Software Repositories (MSR), pp. 247–256.

[14] J. Lerch and M. Mezini, “Finding Duplicates of Your
Yet Unwritten Bug Report,” in 2013 17th European
Conference on Software Maintenance and
Reengineering (CSMR), pp. 69–78.

[15] R. Wu, H. Zhang, S.-C. Cheung, and S. Kim,
“Crashlocator: Locating crashing faults based on crash
stacks,” in Proceedings of the 2014 International
Symposium on Software Testing and Analysis. ACM,
pp. 204–214. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2610386

[16] C. Liu, X. Yan, L. Fei, J. Han, and S. P. Midkiff,
“SOBER: Statistical Model-based Bug Localization,”
in Proceedings of the 10th European Software
Engineering Conference Held Jointly with 13th ACM
SIGSOFT International Symposium on Foundations of
Software Engineering, ser. ESEC/FSE-13. ACM, pp.
286–295. [Online]. Available:
http://doi.acm.org/10.1145/1081706.1081753

[17] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I.
Jordan, “Scalable statistical bug isolation,” in ACM
SIGPLAN Notices, vol. 40. ACM, pp. 15–26. [Online].
Available: http://dl.acm.org/citation.cfm?id=1065014

[18] S. Kim, T. Zimmermann, and N. Nagappan, “Crash
graphs: An aggregated view of multiple crashes to
improve crash triage,” in 2011 IEEE/IFIP 41st
International Conference on Dependable Systems
Networks (DSN), pp. 486–493.

[19] B. Marr, “Why only one of the 5 vs of big data really
matters,” http://www.ibmbigdatahub.com/blog/
why-only-one-5-vs-big-data-really-matters, March
2015.

[20] Canonical Ltd. Launchpad. [Online]. Available:
https://launchpad.net/

[21] G. Robles, J. M. González-Barahona,
D. Izquierdo-Cortazar, and I. Herraiz, “Tools and
datasets for mining libre software repositories,”
Multi-Disciplinary Advancement in Open Source
Software and Processes, p. 24, 2011.

[22] G. Salton and M. J. McGill, Introduction to modern
information retrieval, ser. McGraw-Hill computer
science series. McGraw-Hill.

[23] Elasticsearch BV. Elasticsearch. [Online]. Available:
https://www.elastic.co/products/elasticsearch

[24] mozilla/socorro: Socorro is a server to accept and
process Breakpad crash reports. [Online]. Available:
https://github.com/mozilla/socorro

[25] E. Amigó, J. Gonzalo, J. Artiles, and F. Verdejo, “A
comparison of extrinsic clustering evaluation metrics
based on formal constraints,” vol. 12, no. 4, pp.
461–486. [Online]. Available:
http://link.springer.com.login.ezproxy.library.ualberta.
ca/article/10.1007/s10791-008-9066-8

[26] F. Khomh, B. Chan, Y. Zou, and A. Hassan, “An
Entropy Evaluation Approach for Triaging Field
Crashes: A Case Study of Mozilla Firefox,” in 2011
18th Working Conference on Reverse Engineering
(WCRE), pp. 261–270.

[27] L. Guerrouj, M. Di Penta, G. Antoniol, and Y.-G.
Guéhéneuc, “Tidier: an identifier splitting approach
using speech recognition techniques,” Journal of
Software: Evolution and Process, vol. 25, no. 6, pp.
575–599, 2013.

[28] E. Hill, D. Binkley, D. Lawrie, L. Pollock, and
K. Vijay-Shanker, “An empirical study of identifier
splitting techniques,” Empirical Software Engineering,
vol. 19, no. 6, pp. 1754–1780, 2014.

